NumPy与Matplotlib库

本文介绍了Python中NumPy库的基础操作,包括数组创建、算数运算、广播机制及元素访问,并展示了如何利用Matplotlib绘制正弦和余弦函数图像。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

NumPy

1.1 导入NumPy库

import numpy as np

Python中使用import导入库,这里的意思是将numpy作为np导入。通过这样的形式,之后NumPy相关的方法均可通过np调用。

1.2 生成NumPy数组

import numpy as np
x = np.array([1.0, 2.0, 3.0])
print(x)
print(type(x))

输出结果:

[1. 2. 3.]
<class 'numpy.ndarray'>

使用np.array()方法接受Python列表作为参数,生成NumPy数组。

1.3 NumPy的算数运算

import numpy as np
x = np.array([1.0, 2.0, 3.0])
y = np.array([2.0, 4.0, 6.0])

print(x+y)
print(x-y)
print(x*y)
print(x/y)

print(x/2.0)

输出结果:

[3. 6. 9.]
[-1. -2. -3.]
[ 2.  8. 18.]
[0.5 0.5 0.5]
[0.5 1.  1.5]

对应列表元素作相应的基本运算。

最后一种print(x/2.0),NumPy数组的各个元素和标量之间进行运算,称为广播,后面会提到。

1.4 NumPy的N维数组

import numpy as np
A = np.array([[1, 2], [3, 4]])
print(A)
print(A.shape)
print(A.dtype)

B = np.array([[3, 0], [0, 6]])

print(A+B)
print(A*B)

print(A*10)

输出结果:

[[1 2]
 [3 4]]
(2, 2)
int32
[[ 4  2]
 [ 3 10]]
[[ 3  0]
 [ 0 24]]
[[10 20]
 [30 40]]

这里生成两个2×22 \times 22×2的矩阵A、B。矩阵的形状可以通过shape查看,矩阵元素的数据类型可以通过dtype查看。和数组的算术运算一样,矩阵的算术运算可以在相同形状的矩阵之间以对应元素的方式运算,也可以通过标量运算。

数学上:一维数组称为向量,二维数组称为矩阵,三维和三维以上的数组称为张量或多为数组。

1.5 广播

在NumPy中,形状不同的数组之间也可以进行运算。在上一个例子中,print(A*10)是将10扩展成2×22 \times 22×2的矩阵[[10, 10], [10, 10]],然后运算,这个巧妙的功能被称为广播。注意不是任何数组都可以进行运算

import numpy as np
A = np.array([1, 2, 3])
B = np.array([[3, 0], [0, 6]])

print(A+B)

报错:ValueError: operands could not be broadcast together with shapes (3,) (2,2)

1.6 访问元素

  1. 索引访问

    import numpy as np
    x = np.array([[51, 55], [14, 19], [0, 4]])
    print(x)
    print(x[0])
    print(x[0][1])
    
    for row in x:
        print(row)
    

    输出结果:

    [[51 55]
     [14 19]
     [ 0  4]]
    [51 55]
    55
    [51 55]
    [14 19]
    [0 4]
    
  2. 数组访问

    import numpy as np
    x = np.array([[51, 55], [14, 19], [0, 4]])
    x = x.flatten()
    print(x)
    print(x[np.array([0, 2, 4])])//获取索引024 的元素
    

    输出结果:

    [51 55 14 19  0  4]
    [51 14  0]
    

    flatten方法将x转化成一维数组。

  3. 标记法

    import numpy as np
    x = np.array([[51, 55], [14, 19], [0, 4]])
    print(x > 15)
    print(x[x > 15])
    

    输出结果:

    [[ True  True]
     [False  True]
     [False False]]
    [51 55 19]
    

Matplotlib

2.1 导入Matplotlib库

import matplotlib.pyplot as plt

2.2 绘制简单图形

import numpy as np
import matplotlib.pyplot as plt

x = np.arange(0, 6, 0.1)
y = np.sin(x)
plt.plot(x, y)
plt.show()

输出结果:
在这里插入图片描述
使用arange方法生成了的x,y的值如下:

[0.  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.  1.1 1.2 1.3 1.4 1.5 1.6 1.7
 1.8 1.9 2.  2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.  3.1 3.2 3.3 3.4 3.5
 3.6 3.7 3.8 3.9 4.  4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.  5.1 5.2 5.3
 5.4 5.5 5.6 5.7 5.8 5.9]
[ 0.          0.09983342  0.19866933  0.29552021  0.38941834  0.47942554
  0.56464247  0.64421769  0.71735609  0.78332691  0.84147098  0.89120736
  0.93203909  0.96355819  0.98544973  0.99749499  0.9995736   0.99166481
  0.97384763  0.94630009  0.90929743  0.86320937  0.8084964   0.74570521
  0.67546318  0.59847214  0.51550137  0.42737988  0.33498815  0.23924933
  0.14112001  0.04158066 -0.05837414 -0.15774569 -0.2555411  -0.35078323
 -0.44252044 -0.52983614 -0.61185789 -0.68776616 -0.7568025  -0.81827711
 -0.87157577 -0.91616594 -0.95160207 -0.97753012 -0.993691   -0.99992326
 -0.99616461 -0.98245261 -0.95892427 -0.92581468 -0.88345466 -0.83226744
 -0.77276449 -0.70554033 -0.63126664 -0.55068554 -0.46460218 -0.37387666]

将x,y的数据传给plt.plot,然后绘制图形,最后通过plt.show()显示图像。

2.3 pyplot功能

在以上的图像中,我们尝试追加cos函数的图形,并尝试使用pyplot的添加标题和x轴标签等其他功能。

import numpy as np
import matplotlib.pyplot as plt

x = np.arange(0, 6, 0.1)
y1 = np.sin(x)
y2 = np.cos(x)

plt.plot(x, y1, label="sin")
plt.plot(x, y2, linestyle="--", label="cos")
plt.xlabel("x")
plt.ylabel("y")
plt.title('sin&cos')
plt.legend()
plt.show()

输出结果:
在这里插入图片描述

2.4 显示图片

import matplotlib.pyplot as plt
from matplotlib.image import imread

img = imread('cat.jpg')
plt.imshow(img)

plt.show()

输出结果:
在这里插入图片描述

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值