DataV构建大屏(全屏)数据展示页面

官方文档地址:DataV

1.安装组件库

  • npm安装
    npm install @jiaminghi/data-view

2.使用

全局引入

// 将自动注册所有组件为全局组件
import dataV from '@jiaminghi/data-view'
Vue.use(dataV)

按需引入

按需引入仅支持基于ES moduletree shaking,按需引入示例如下:

import { borderBox1 } from '@jiaminghi/data-view'
Vue.use(borderBox1)

3.实现

(1)全屏容器

全屏容器可以根据屏幕比例及当前浏览器窗口大小,自动进行缩放处理。浏览器全屏后,全屏容器将充满屏幕。

<dv-full-screen-container>content</dv-full-screen-container>

注意:使用前请注意将bodymargin设为0,否则会引起计算误差,全屏后不能完全充满屏幕。 

(2)边框

官方文档中给出了边框的使用以及使用效果。

所有边框均支持自定义颜色及背景色,方法如下

<dv-border-box-1 :color="['#0DFFF1','#0E466C']" backgroundColor="blue">dv-border-box-1</dv-border-box-1>

(3)loading加载

<dv-loading>Loading...</dv-loading>

(4)装饰

 SVG元素绘制,增强视觉效果,官方文档中有使用效果

所有装饰均支持自定义颜色,方法如下

<dv-decoration-1 :color="['red', 'green']" />

(5)图表

图表组件基于Charts封装,只需要将对应图表option数据传入组件即可。

<dv-charts :option="option" />

 (6)动态环图

基于Charts封装。

<dv-active-ring-chart :config="config" style="width:300px;height:300px" />

 具体属性详见官方文档动态环图 | DataV

(7) 胶囊柱图

<dv-capsule-chart :config="config" style="width:300px;height:200px" />

### Python 杭州二手房数据可视化全屏系统的设计与实现 #### 后端部分:Django框架的应用 为了构建杭州二手房数据可视化全屏系统,后端选择了Django框架。该框架提供了强的Web应用开发能力,并且易于集成数据库和其他服务。 ```python # settings.py 中配置数据库连接 DATABASES = { 'default': { 'ENGINE': 'django.db.backends.mysql', 'NAME': 'hangzhou_real_estate', # 数据库名称 'USER': 'root', # 用户名 'PASSWORD': 'password', # 密码 'HOST': 'localhost', # 主机地址 'PORT': '3306' # 端口号 } } ``` 创建模型类用于表示二手房信息表: ```python from django.db import models class House(models.Model): title = models.CharField(max_length=255, verbose_name="标题") price = models.FloatField(verbose_name="总价(万元)") area = models.IntegerField(verbose_name="建筑面积()") district = models.CharField(max_length=50, verbose_name="所在区县") class Meta: db_table = "house_info" verbose_name_plural = "房屋列表" def __str__(self): return self.title ``` 编写视图函数返回JSON格式的数据前端调用: ```python import json from django.http import JsonResponse from .models import House def get_house_data(request): houses = House.objects.all().values('title','price','area','district') data_list = list(houses) response_data = {"data": data_list} return JsonResponse(response_data, safe=False) ``` #### 前端部分:ECharts图表库的运用 在前端页面中引入ECharts库并定义容器div标签用来放置图表,在`<script>`标签内初始化echarts实例对象加载所需选项设置完成渲染工作。 ```html <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <title>Hangzhou Real Estate Visualization</title> <!-- 引入 ECharts 文件 --> <script src="https://cdn.jsdelivr.net/npm/echarts@latest/dist/echarts.min.js"></script> <style type="text/css"> /* 设置 div 宽高 */ #main { width: 100%; height: 600px; margin-top: 2rem;} </style> </head> <body> <div id="main"></div> <script type="text/javascript"> // 初始化 echarts 实例 var myChart = echarts.init(document.getElementById('main')); option = { tooltip : { trigger: 'axis' }, legend: {}, xAxis : [ { type : 'category', boundaryGap : true, data : [] } ], yAxis : [ { type : 'value' } ], series : [ { name:'房价走势', type:'line', stack: '总量', data:[] } ] }; fetch('/api/get-house-data/') .then((response) => response.json()) .then(function(data){ let titles = []; let prices = []; data.data.forEach(item=>{ titles.push(item['title']); prices.push(item['price']); }); option.xAxis[0].data = titles; option.series[0].data = prices; // 使用刚指定的配置项和数据显示图表。 myChart.setOption(option); }); </script> </body> </html> ``` 此代码片段展示了如何使用Python Django框架配合Echarts库来设计和实现在网页浏览器上运行的展示杭州地区二手房市场价格趋势的功能[^3]。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值