路径规划——搜索算法详解(七):D*lite算法详解与Matlab代码

!!!注意!!!

看本篇之前,一定要先看笔者上一篇的LPA*讲解,笔者统一了符号看起来过渡会更加好理解!

到目前为止,我们学习了广度优先搜索Dijkstra算法、能够计算任意两个路径点距离的Floyd算法、基于采样实现快速计算的RRT算法、能够利用启发项加速探索过程的A*算法、适用于动态环境反向搜索的D*算法、增量式动态搜索的A*——LPA*算法,每种算法都有其特点,大家根据需求选择就好。

无独有偶,上述6种路径搜索算法仅适用于处理起点与终点固定情况下的路径搜索问题,本文将介绍搜索算法篇的最后一种算法——D*lite算法,该算法基于D*反向搜索的思想、LPA*增量式搜索的思想,是一种变起点反向增量式动态路径搜索算法,接下来便进入正题吧,老规矩分为算法介绍与案例讲解。(PS:搜索算法部分总结完后将开启路径优化的篇章,将介绍各种拟合轨迹的曲线,并且给出能够直接采用的C++代码,需要的朋友可以关注后续!)

一、D*lite算法流程:

1.与LPA*算法的联系与区别:

其算法原理与LPA*算法类似(没有看的朋友先看我上一篇LPA*算法的讲解再来看,因为里面定义的符号含义需要理解,不然看不懂的!!!),其改进了LAP*中的代价项k,增加了机器人当前实际移动距离km(机器人位置移动可以看作是起点位置移动了),其定义如下:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值