系统内置函数
1)查看系统自带的函数
hive> show functions;
2)显示自带的函数的用法
hive> desc function upper;
3)详细显示自带的函数的用法
hive> desc function extended upper;
自定义函数
1)Hive 自带了一些函数,比如:max/min 等,但是数量有限,自己可以通过自定义 UDF来方便的扩展。
2)当 Hive 提供的内置函数无法满足你的业务处理需要时,此时就可以考虑使用用户自定义函数(UDF:user-defined function)。
3)根据用户自定义函数类别分为以下三种:
(1)UDF(User-Defined-Function)
- 一进一出
(2)UDAF(User-Defined Aggregation Function)
- 聚集函数,多进一出。类似于:count/max/min
(3)UDTF(User-Defined Table-Generating Functions)
- 一进多出。 如 lateral view explore()
4)官方文档地址
https://cwiki.apache.org/confluence/display/Hive/HivePlugins
5)编程步骤
(1)继承 org.apache.hadoop.hive.ql.UDF
(2)需要实现 evaluate 函数;evaluate 函数支持重载;
(3)在 hive 的命令行窗口创建函数
a)添加 jar
add jar linux_jar_path
b)创建 function
create [temporary] function [dbname.]function_name AS class_name;
(4)在 hive 的命令行窗口删除函数
Drop [temporary] function [if exists] [dbname.]function_name;
6)注意事项
UDF 必须要有返回类型,可以返回 null,但是返回类型不能为 void;
自定义 UDF 函数
1)创建一个 Maven 工程 Hive
2)导入依赖
<dependency>
<groupId>org.apache.hive</groupId>
<artifactId>hive-exec</artifactId>
<version>1.2.1</version>
</dependency>
3)创建一个类
package com.hive;
import org.apache.hadoop.hive.ql.exec.UDF;
public class MyUDF extends UDF {
public int evaluate(int data){
return data+5;
}
// 这里可以使用函数重载
public int evaluate(int data, int data2){
return data+data2+5;
}
}
4)打成 jar 包上传到服务器/root/app/hive-1.2.1-bin/lib
5)将 jar 包添加到 hive 的 classpath
add jar /root/app/hive-1.2.1-bin/lib/Hive-1.0-SNAPSHOT.jar;
6)创建函数与开发好的 java class 关联
create function addFive as 'com.hive.MyUDF';
7)在 hql 中使用自定义的函数
hive (default)> select addFive(id) from haha;
OK
_c0
6
7
8
9
10
Time taken: 0.498 seconds, Fetched: 5 row(s)
自定义 UDTF 函数
1)需求说明
自定义一个 UDTF 实现将一个任意分割符的字符串切割成独立的单词,例如:
Line:"hello,world,hadoop,hive"
Myudtf(line, ",")
hello
world
hadoop
hive
2)代码实现
package com.hive.udtf;
import org.apache.hadoop.hive.ql.exec.UDFArgumentException;
import org.apache.hadoop.hive.ql.metadata.HiveException;
import org.apache.hadoop.hive.ql.udf.generic.GenericUDTF;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspectorFactory;
import org.apache.hadoop.hive.serde2.objectinspector.StructObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.primitive.PrimitiveObjectInspectorFactory;
import java.util.ArrayList;
import java.util.List;
public class MyUDTF extends GenericUDTF {
private List<String> dataList = new ArrayList<>();
// 定义输出数据的列名和类型
@Override
public StructObjectInspector initialize(StructObjectInspector argOIs) throws UDFArgumentException {
// 定义输出的列名
List<String> fieldNames = new ArrayList<>();
// 添加输出数据的列名
fieldNames.add("word");
// 定义输出数据的类型
List<ObjectInspector> fieldOIs = new ArrayList<>();
// 添加输出数据的类型
fieldOIs.add(PrimitiveObjectInspectorFactory.javaStringObjectInspector);
return ObjectInspectorFactory.getStandardStructObjectInspector(fieldNames,fieldOIs);
}
@Override
public void process(Object[] args) throws HiveException {
// 1.获取数据
String data = args[0].toString();
// 2.获取分隔符
String splitKey = args[1].toString();
// 3.切分数据
String[] words = data.split(splitKey);
// 4.遍历写出
for (String word:words){
// 5.将数据放入集合
dataList.clear();
dataList.add(word);
// 6.写出数据
forward(dataList);
}
}
@Override
public void close() throws HiveException {
}
}
4)打成 jar 包上传到服务器/root/app/hive-1.2.1-bin/lib
5)将 jar 包添加到 hive 的 classpath
add jar /root/app/hive-1.2.1-bin/lib/Hive-UDTF-1.0-SNAPSHOT.jar;
6)创建函数与开发好的 java class 关联
create function myudtf as 'com.hive.udtf.MyUDTF';
7)在 hql 中使用自定义的函数
hive (default)> select myudtf('hello,world,liu,xu',',') columns;
OK
columns
hello
world
liu
xu
Time taken: 0.067 seconds, Fetched: 4 row(s)