
机器学习
文章平均质量分 60
旭cooler
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
隐马尔科夫模型HMM
隐马尔科夫模型(Hidden Markov Model,以下简称HMM)是比较经典的机器学习模型了,它在语言识别,自然语言处理,模式识别等领域得到广泛的应用。HMM初探什么样的问题需要HMM模型使用HMM模型时我们的问题一般有这两个特征:问题是基于序列的,比如时间序列,或者状态序列。问题中有两类数据,一类序列数据是可以观测到的,即观测序列;而另一类数据是不能观察到的,即隐藏状态序列,简...原创 2020-03-05 11:50:03 · 241 阅读 · 0 评论 -
EM算法与高斯混合模型(GMM)
单高斯模型(GSM) 高斯模型是一种常用的变量分布模型, 而且有很好的数学性质,具有各阶导数,变量频数分布由 μ、σ 完全决定等等,在许多领域得到广泛应用。它的概率密度分布函数如下:KaTeX parse error: No such environment: equation at position 8: \begin{̲e̲q̲u̲a̲t̲i̲o̲n̲}̲f \left ( x \...原创 2020-03-05 11:48:53 · 598 阅读 · 2 评论 -
聚类
聚类定义聚类就是对大量未知标注的数据集,按数据的内在相似性将数据集划分为多个类别,使类别内的数据相似度较大而类别间的数据相似度较小距离度量闵可夫斯基距离闵氏距离不是一种距离,而是一组距离的定义,是对多个距离度量公式的概括性的表述。其中p是一个变参数:当p=1时,就是曼哈顿距离;当p=2时,就是欧氏距离;当p→∞时,就是切比雪夫距离。曼哈顿距离曼哈顿距离也叫”曼哈顿街区距...原创 2020-03-05 11:47:22 · 2157 阅读 · 0 评论 -
SVM
基本概念支持向量机(Support Vector Machine, SVM)的基本模型是在特征空间上找到最佳的分离超平面使得训练集上正负样本间隔最大。SVM是用来解决二分类问题的有监督学习算法,在引入了核方法之后SVM也可以用来解决非线性问题。一般SVM有下面三种:硬间隔支持向量机(线性可分支持向量机):当训练数据线性可分时,可通过硬间隔最大化学得一个线性可分支持向量机,即分割过程中不允...原创 2020-03-05 11:46:27 · 297 阅读 · 0 评论 -
决策树与随机森林
从LR到决策树思考一下一个分类问题:是否去相亲,logistic回归的解决办法可能是这样的可是有时候,人更直观的方式是这样的决策树模型(决策树)分类决策树 模型是一种描述对实例进行分类的树形结构.决策树由结点(node)和有向边(directed edge)组成.结点有两种类型:内部结点(intemal node)和叶结点(leaf node).内部结点表示一个特征或属性,叶结点表示一...原创 2020-03-05 11:44:22 · 1343 阅读 · 0 评论 -
多元回归和Logistic回归
什么是线性回归有监督学习 => 学习样本为D={(xi,yi)}i=1ND=\{(x_i,y_i)\}^N_{i=1}D={(xi,yi)}i=1N输出/预测的结果yiy_iyi为连续变量需要学习映射f:x→yf:x→yf:x→y假定输入x与输出y之间有线性相关关系一元线性回归y=ax+by=ax+by=ax+b多元线性回归损失函数(loss function...原创 2020-03-05 11:41:47 · 3460 阅读 · 0 评论