
低照度反射去除论文
文章平均质量分 72
低照度论文笔记
'楓
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
低照度Underexposed Photo Enhancement using Deep Illumination Estimation论文笔记
论文题目:Underexposed Photo Enhancement using Deep Illumination Estimation 作者: RuiXing Wng.et 发表会议:CVPR2019 Baseline:Deep Bilateral Learning for Real-Time Image Enhancement Abstract 作者提出不像以前那样直接学习图像到图像的映射,而是在我们的网络中引入中间照明,将输入与预期的增强结果相关联,这增强了网络从专家修饰的输入/输出图像对中学习复原创 2021-01-27 12:55:22 · 494 阅读 · 0 评论 -
Zero-Reference Deep Curve Estimation for Low-Light Image Enhancement论文笔记[低照度]
论文题目:Zero-Reference Deep Curve Estimation for Low-Light Image Enhancement 作者:Chunle Guo, Chongyi Li ,Jichang Guo,Chen Change Loy,Junhui Hou,Sam Kwong,Runmin Cong4 发表会议:CVPR2020 1、概要 本文为实现低照图图像增强提出了Zero-Reference Deep Curve Estimation(Zero-DCE),零参考深度估计曲线,将光原创 2021-01-25 21:36:41 · 823 阅读 · 0 评论 -
低照度GLADNet论文笔记
论文题目:GLADNet: Low-Light Enhancement Network with Global Awareness 作者:Wenjing Wang*, Chen Wei*, Wenhan Yang, Jiaying Liu 发表会议:IEEE International Conference on Automatic Face & Gesture Recognition 1、目的 增强低照度图像,关键思想是计算输入的低照度图像的全局光照估计,然后在估计的结构指导下进行调整光照,并使用原创 2021-01-25 19:46:03 · 673 阅读 · 2 评论 -
反射去除CoRRN论文笔记
论文题目:CoRRN: Cooperative Reflection Removal Network 发表:IEEE TRANSACA TIONS ON P A TTERN ANAL YSIS AND MACHINE INTELLIGENCE 作者:Renjie Wan等 1、目的 去除反射和恢复背景 2、背景 许多基于非学习的方法采用两阶段: (1)定位反射区域(例如,通过对背景和反射边缘进行分类) (2)使用Levin等人提出的方法基于边缘信息恢复背景层。 但是,定位反射区域本身是一项非常具有挑战性的任转载 2021-01-24 20:22:01 · 721 阅读 · 0 评论