代码随想录day53

1143. 最长公共子序列

class Solution {
    public int longestCommonSubsequence(String text1, String text2) {
        // 这个题和最长子数组不一样,这个不能暴力
        // 这道题可以考虑dp,因为他的长度也就在1000以内
        // dp[i][j] 表示在i-1为底 j -1为底的最长公共子序列 
        // 递推公式
        // if text1[i-1] == text[j-1]
        // dp[i][j] = dp[i-1][j-1] + 1

        // acde
        // acbe
        // 如果是子数组的话,他的递推公式就是只考虑相等的情况,因为不等的话就是0 dp[i][j] = Math.max(dp[i-1][j-1] + 1,dp[i][j])

        // abcde
        // ace
        // 如果是子序列的话,考虑两种情况
        // 相等: dp[i][j] = dp[i-1][j-1] + 1
        // 不等:例子:如果到abcd和ace的情况,一种就是abcd和ac,一种就是abc和ace比较 

        char[] text1_arr = text1.toCharArray();
        char[] text2_arr = text2.toCharArray();
        int res = 0;
        int[][] dp = new int[text1_arr.length + 1][text2_arr.length + 1];
        for(int i = 1;i <= text1_arr.length;i++){
            for(int j = 1;j <= text2_arr.length;j++){
                if(text1_arr[i-1] == text2_arr[j - 1]){
                    dp[i][j] = dp[i-1][j-1] + 1;
                }else{
                    dp[i][j] = Math.max(dp[i-1][j],dp[i][j-1]);
                }
            }
        }
        

        return dp[text1_arr.length][text2_arr.length];


    }
}

1035. 不相交的线

class Solution {
    public int maxUncrossedLines(int[] nums1, int[] nums2) {
        
        int [][] dp = new int[nums1.length + 1][nums2.length + 1];

        for(int i = 1;i <= nums1.length;i++){
            for(int j = 1;j <= nums2.length;j++){
                if(nums1[i-1] == nums2[j-1]){
                    dp[i][j] = dp[i-1][j-1] + 1;
                }else{
                    dp[i][j] = Math.max(dp[i-1][j],dp[i][j-1]);
                }
            }
        }
        return dp[nums1.length][nums2.length];

    }
}

暴力,超时

class Solution {
    public int maxSubArray(int[] nums) {
        // 暴力
        int res = Integer.MIN_VALUE;
        for(int i = 0;i < nums.length ;i++){
            int count =0;
            for(int j = i; j < nums.length;j++){
                count += nums[j];
                res = Math.max(count,res);
            }
             res = Math.max(count,res);
        }
        return res;

    }
}

贪心太难想了,想不到

class Solution {
    public int maxSubArray(int[] nums) {
        // // 暴力
        // int res = Integer.MIN_VALUE;
        // for(int i = 0;i < nums.length ;i++){
        //     int count =0;
        //     for(int j = i; j < nums.length;j++){
        //         count += nums[j];
        //         res = Math.max(count,res);
        //     }
        //      res = Math.max(count,res);
        // }
        // return res;

        // 贪心
        int res =Integer.MIN_VALUE;
        int count =0;
        for(int i = 0;i < nums.length;i++){
            count += nums[i];
            if(res < count){
                res = count;
            }
            if(count < 0) count = 0;
        }
        return res;

    }
}
class Solution {
    public int maxSubArray(int[] nums) {
        // // 暴力
        // int res = Integer.MIN_VALUE;
        // for(int i = 0;i < nums.length ;i++){
        //     int count =0;
        //     for(int j = i; j < nums.length;j++){
        //         count += nums[j];
        //         res = Math.max(count,res);
        //     }
        //      res = Math.max(count,res);
        // }
        // return res;

        // 贪心
        // int res =Integer.MIN_VALUE;
        // int count =0;
        // for(int i = 0;i < nums.length;i++){
        //     count += nums[i];
        //     if(res < count){
        //         res = count;
        //     }
        //     if(count < 0) count = 0;
        // }
        // return res;

        // dp数组
       int [] dp =  new int[nums.length + 1];
       int res = Integer.MIN_VALUE;
       for(int i = 0;i < nums.length;i++){
           dp[i + 1] = Math.max(dp[i] + nums[i],nums[i]);
            if(res < dp[i+1]){
                res = dp[i+1];
            }
       }
       return res;

    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值