动手学习深度学习 DIVE into Deep learning 的 学习 第一章 前言
本文为学习《动手学习深度学习》的一些学习,内容来源于网址:
https://d2l.ai/ Dive into Deep Learning — Dive into Deep Learning 0.17.1 documentation 主要学习pytorch的一些内容
引言
全书的结构
(https://zh.d2l.ai/_images/book-org.svg)]
前言
机器学习的任务 生成一个输入到输出的映射
具体实现:
- 从一个随机初始化参数的模型开始,这个模型基本毫不“智能”。
- 获取一些数据样本(例如,音频片段以及对应的{是,否}{是,否}标签)。
- 调整参数,使模型在这些样本中表现得更好。
- 重复第2步和第3步,直到模型在任务中的表现令你满意。
(https://zh.d2l.ai/_images/ml-loop.svg)]
1.2. 关键组件
无论我们遇到什么类型的机器学习问题,都一定包含如下的核心组件:
- 我们可以学习的数据(data)。
- 如何转换数据的模型(model)。
- 一个目标函数(objective function),用来量化模型的有效性。
- 调整模型参数以优化目标函数的算法(algorithm)。
1.2.1. 数据
每个数据集由一个个样本(example, sample)组成,大多时候,它们遵循独立同分布(independently and identically distributed, i.i.d.)。 样本有时也叫做数据点(data point)或者数据实例(data instance),通常每个样本由一组称为特征(features,或协变量(covariates))的属性组成。 机器学习模型会根据这些属性进行预测。 在上面的监督学习问题中,要预测的是一个特殊的属性,它被称为标签(label,或目标(target))。
当每个样本的特征类别数量都是相同的时候,其特征向量是固定长度的,这个长度被称为数据的维数(dimensionality)。 固定长度的特征向量是一个方便的属性,它有助于我们量化学习大量样本。
然而,并不是所有的数据都可以用“固定长度”的向量表示。 与传统机器学习方法相比,深度学习的一个主要优势是可以处理不同长度的数据。
1.2.2. 模型
大