动态规划求最短路径(Floyd算法)
问题概述
在一无负权环的图中,给定起点startVertex和重点endVertex,求两点之间最短路径path的长度length。
大致思路
在此之前,我们已经学会了使用Dijkstra算法(一种贪心算法)来解决最短路径问题,然而在动态规划的框架下我们需要将问题“逐步解决”。
- 假设我们我们已经得知,在允许途径v1,v2,v3…vn“中转”的前提下,各起点至各终点最短路径的长度。
- 在1的基础上,继续求解在允许途径v1,v2,v3…vn+1“中转”的前提下,各起点至各终点最短路径的长度。
实现方式
我们使用距离矩阵来记录这些长度。由上可知,我们拿到的第一个矩阵应当是该图的邻接矩阵,其中不相邻的两点对应位置应填上正无穷。并不断地增加“中转点”的范围,不断地对这个矩阵进行更新。当“中转点”集合等于点的全集时,我们就得到了记录从各点到各点的最短路径长。
更新操作:
当我们把在矩阵中对应索引为k的点新加入“中转点”集合时,需对该矩阵的每一个点进行以下操作:
for i in range(matrixa.shape[0]):
for j in range(matrixa.shape[1]):
if matrixa[i][j]>matrixa[i][k]+matrixa[j][k]:
matrixa[i][j]=matrixa[i][k]+matrixa[j][k]
通过三层循环,我们就可以实现这个算法。
路径的复现
如上所述,该算法的时间复杂度为O(n^3),随着计算的推进,路径可能会有极大的变化,所以每次发现一条新的最短路径就将其单独保存很明显是不现实的。
下面引入一个命题:
已知点sVer至eVer的最短路径path0经过mVer。那么在这一路径中由自sVer至mVer的最短路径和自mVer至eVer的最短路径拼接而成。
该命题的证明也很简单,如果两段路径不是各自的最短路径,那么两段路径就可以找出更短的,进而可得当前所谓的自sVer至eVer的“最短路径”并不最短。
在上述命题已然成立的情况下,我们只需要得到自sVer至eVer最短路径中的某个mVer即可使用分治算法复原出整条路径。
复现路径实现
路径的记录
def findShortestPath(self,start,end):
if end==start:
return str(start)
if self.path[start][end]==start:
return str(start)+'->'+str(end)
else:
middle=self.path[start][end]
return self.findShortestPath