悲观锁与乐观锁

目录

悲观锁与乐观锁的概念

悲观锁

乐观锁

悲观锁的实现

synchronized 关键字

ReentrantLock 类

乐观锁的实现

版本号机制

CAS 操作

悲观锁与乐观锁的区别

锁机制

性能

适用场景

示例对比

悲观锁示例

乐观锁示例

性能测试

测试结果分析

总结


在多线程编程中,锁机制是确保数据一致性和线程安全的关键技术。悲观锁和乐观锁是两种常见的锁机制,它们在不同的场景下有着各自的优势和适用范围。本文将详细介绍悲观锁和乐观锁的区别,并通过 Java 代码示例展示它们的使用方法。

悲观锁与乐观锁的概念

悲观锁

悲观锁(Pessimistic Locking)假设在并发环境中会发生冲突,因此在访问共享资源时总是先加锁,确保在事务期间没有其他线程可以修改该资源。悲观锁在事务开始时就获取锁,直到事务结束时才释放锁。

乐观锁

乐观锁(Optimistic Locking)假设在并发环境中很少发生冲突,因此在访问共享资源时不立即加锁,而是等到真正需要修改资源时再检查是否有冲突。如果发现冲突,则采取补偿措施(如重试或回滚)。

悲观锁的实现

synchronized 关键字

synchronized 关键字是 Java 中最基本的悲观锁实现方式。它可以用于方法或代码块,确保同一时间只有一个线程可以执行被同步的代码。

public class Counter {
    private int count = 0;

    public synchronized void increment() {
        count++;
    }

    public synchronized void decrement() {
        count--;
    }

    public synchronized int getCount() {
        return count;
    }
}
ReentrantLock 类

ReentrantLock 类提供了比 synchronized 更灵活的锁机制。它可以显式地获取和释放锁,并支持公平锁和非公平锁。

import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;

public class Counter {
    private int count = 0;
    private final Lock lock = new ReentrantLock();

    public void increment() {
        lock.lock();
        try {
            count++;
        } finally {
            lock.unlock();
        }
    }

    public void decrement() {
        lock.lock();
        try {
            count--;
        } finally {
            lock.unlock();
        }
    }

    public int getCount() {
        lock.lock();
        try {
            return count;
        } finally {
            lock.unlock();
        }
    }
}

乐观锁的实现

版本号机制

版本号机制的基本思路是在数据中增加一个字段version,表示该数据的版本号,每当数据被修改,版本号加1。

当某个线程查询数据时,将该数据的版本号一起查出来;

当该线程更新数据时,判断当前版本号与之前读取的版本号是否一致,如果一致才进行操作。

需要注意的是,这里使用了版本号作为判断数据变化的标记,实际上可以根据实际情况选用其他能够标记数据版本的字段,如时间戳等。

 下面以“更新玩家金币数”为例(数据库为MySQL,其他数据库同理),看看悲观锁和版本号机制是如何应对并发问题的。

考虑这样一种场景:游戏系统需要更新玩家的金币数,更新后的金币数依赖于当前状态(如金币数、等级等),因此更新前需要先查询玩家当前状态。

下面的实现方式,没有进行任何线程安全方面的保护。如果有其他线程在query和update之间更新了玩家的信息,会导致玩家金币数的不准确。

@Transactional
public void updateCoins(Integer playerId){
    //根据player_id查询玩家信息
    Player player = query("select coins, level from player where player_id = {0}", playerId);
    //根据玩家当前信息及其他信息,计算新的金币数
    Long newCoins = ……;
    //更新金币数
    update("update player set coins = {0} where player_id = {1}", newCoins, playerId);
}

为了避免这个问题,悲观锁通过加锁解决这个问题,代码如下所示。在查询玩家信息时,使用select …… for update进行查询;

该查询语句会为该玩家数据加上排它锁,直到事务提交或回滚时才会释放排它锁;

在此期间,如果其他线程试图更新该玩家信息或者执行select for update,会被阻塞。

@Transactional
public void updateCoins(Integer playerId){
    //根据player_id查询玩家信息(加排它锁)
    Player player = queryForUpdate("select coins, level from player where player_id = {0} for update", playerId);
    //根据玩家当前信息及其他信息,计算新的金币数
    Long newCoins = ……;
    //更新金币数
    update("update player set coins = {0} where player_id = {1}", newCoins, playerId);
}

 版本号机制则是另一种思路,它为玩家信息增加一个字段:version。在初次查询玩家信息时,同时查询出version信息;

在执行update操作时,校验version是否发生了变化,如果version变化,则不进行更新。

@Transactional
public void updateCoins(Integer playerId){
    //根据player_id查询玩家信息,包含version信息
    Player player = query("select coins, level, version from player where player_id = {0}", playerId);
    //根据玩家当前信息及其他信息,计算新的金币数
    Long newCoins = ……;
    //更新金币数,条件中增加对version的校验
    int rowsUpdated =update("update player set coins = {0} where player_id = {1} and version = {2}", newCoins, playerId, player.version);
    if (rowsUpdated == 0) {
        throw new OptimisticLockException("Data has been modified by another transaction");
     }
}
CAS 操作

原子操作(如 compareAndSet)是另一种常见的乐观锁实现方式。Java 提供了 AtomicInteger 类,支持 CAS 操作。

import java.util.concurrent.atomic.AtomicInteger;

public class OptimisticCounter {
    private AtomicInteger count = new AtomicInteger(0);

    public void increment() {
        int current;
        int next;
        do {
            current = count.get();
            next = current + 1;
        } while (!count.compareAndSet(current, next));
    }

    public void decrement() {
        int current;
        int next;
        do {
            current = count.get();
            next = current - 1;
        } while (!count.compareAndSet(current, next));
    }

    public int getCount() {
        return count.get();
    }
}

悲观锁与乐观锁的区别

锁机制
  • 悲观锁:在访问共享资源时总是先加锁,确保在事务期间没有其他线程可以修改该资源。
  • 乐观锁:在访问共享资源时不立即加锁,而是等到真正需要修改资源时再检查是否有冲突。
性能
  • 悲观锁:由于总是加锁,可能会导致线程阻塞,影响性能。
  • 乐观锁:只有在真正需要修改资源时才检查冲突,减少了不必要的锁竞争,提高了性能。
适用场景
  • 悲观锁:适用于写操作多于读操作的场景,或者对数据一致性要求极高的场景。
  • 乐观锁:适用于读操作多于写操作的场景,或者冲突概率较低的场景。

示例对比

悲观锁示例
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;

public class PessimisticCounter {
    private int count = 0;
    private final Lock lock = new ReentrantLock();

    public void increment() {
        lock.lock();
        try {
            count++;
        } finally {
            lock.unlock();
        }
    }

    public void decrement() {
        lock.lock();
        try {
            count--;
        } finally {
            lock.unlock();
        }
    }

    public int getCount() {
        lock.lock();
        try {
            return count;
        } finally {
            lock.unlock();
        }
    }
}
乐观锁示例
import java.util.concurrent.atomic.AtomicInteger;

public class OptimisticCounter {
    private AtomicInteger count = new AtomicInteger(0);

    public void increment() {
        int current;
        int next;
        do {
            current = count.get();
            next = current + 1;
        } while (!count.compareAndSet(current, next));
    }

    public void decrement() {
        int current;
        int next;
        do {
            current = count.get();
            next = current - 1;
        } while (!count.compareAndSet(current, next));
    }

    public int getCount() {
        return count.get();
    }
}

性能测试

为了对比悲观锁和乐观锁的性能,我们可以编写一个简单的测试程序。

import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.TimeUnit;

public class LockPerformanceTest {

    public static void main(String[] args) throws InterruptedException {
        testPessimisticLock();
        testOptimisticLock();
    }

    public static void testPessimisticLock() throws InterruptedException {
        PessimisticCounter counter = new PessimisticCounter();
        ExecutorService executor = Executors.newFixedThreadPool(10);

        long start = System.currentTimeMillis();
        for (int i = 0; i < 10000; i++) {
            executor.submit(counter::increment);
        }
        executor.shutdown();
        executor.awaitTermination(1, TimeUnit.MINUTES);

        long end = System.currentTimeMillis();
        System.out.println("Pessimistic Lock Time: " + (end - start) + " ms");
        System.out.println("Final Count: " + counter.getCount());
    }

    public static void testOptimisticLock() throws InterruptedException {
        OptimisticCounter counter = new OptimisticCounter();
        ExecutorService executor = Executors.newFixedThreadPool(10);

        long start = System.currentTimeMillis();
        for (int i = 0; i < 10000; i++) {
            executor.submit(counter::increment);
        }
        executor.shutdown();
        executor.awaitTermination(1, TimeUnit.MINUTES);

        long end = System.currentTimeMillis();
        System.out.println("Optimistic Lock Time: " + (end - start) + " ms");
        System.out.println("Final Count: " + counter.getCount());
    }
}

测试结果分析

通过运行上述测试程序,我们可以观察到悲观锁和乐观锁在不同场景下的性能表现。一般来说:

  • 悲观锁:由于总是加锁,可能会导致线程阻塞,特别是在写操作频繁的场景下,性能较差。
  • 乐观锁:只有在真正需要修改资源时才检查冲突,减少了不必要的锁竞争,提高了性能,特别是在读操作多于写操作的场景下表现更好。

总结

悲观锁和乐观锁是两种常见的锁机制,它们在不同的场景下有着各自的优势和适用范围。悲观锁适用于写操作多于读操作的场景,或者对数据一致性要求极高的场景。乐观锁适用于读操作多于写操作的场景,或者冲突概率较低的场景。

通过本文的学习,希望读者能够更好地理解和选择合适的锁机制,以提高多线程程序的性能和可靠性。如果您有任何疑问或建议,请随时留言交流。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值