一、加载数据集
全部数据:Batch
最大化利用向量的优势,提升计算速度(利用CPU GPU的并行计算能力)
随机梯度下降:mini-batch
只用一个样本,有较好的随机性
首先区分了Epoch(前馈、反馈和更新实现一次就是Epoch)
\ Batch-Size(进行一次训练所用的样本数量)
\ Iterations(内层迭代进行的次数 sum/Batch-size)

shuffle用来打乱数据集中数据的顺序
,然后通过Loader
将数据划分成mini-batch
。

DataSet
是抽象类,不能实例化对象,主要是用于构造我们的数据集- 需要
mini_batch
就需要import DataSet和DataLoader
- 继承DataSet的类需要重写init,getitem,len魔法函数。分别是为了加载数据集,获取数据索引,获取数据总量
- DataLoader对数据集先打乱(shuffle),然后划分成mini_batch
在训练模块加入:if __name__ == '__main__':
二、代码:
import torch
import numpy as np
from torch.utils.data import Dataset, DataLoader
class DiabetesDataset(Dataset):
def __init__(self, filepath):
xy = np.loadtxt(filepath, delimiter=',', dtype=np.float32)
self.len = xy.shape[0] # 取出有多少行
self.x_data = torch.from_numpy(xy[:, :-1])
self.y_data = torch.from_numpy(xy[:, [-1]])
def __getitem__(self, index):
return self.x_data[index], self.y_data[index]
def __len__(self):
return self.len
dataset = DiabetesDataset('diabetes.csv.gz')
train_loader = DataLoader(dataset=dataset, batch_size=32, shuffle=True, num_workers=2)
class Model(torch.nn.Module):
def __init__(self):
super(Model, self).__init__()
self.linear1 = torch.nn.Linear(8, 6)
self.linear2 = torch.nn.Linear(6, 4)
self.linear3 = torch.nn.Linear(4, 1)
self.sigmoid = torch.nn.Sigmoid()
def forward(self, x):
x = self.sigmoid(self.linear1(x))
x = self.sigmoid(self.linear2(x))
x = self.sigmoid(self.linear3(x))
return x
model = Model()
criterion = torch.nn.BCELoss(reduction='mean')
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
if __name__ == '__main__':
for epoch in range(100):
for i, data in enumerate(train_loader, 0):
inputs, labels = data
y_pred = model(inputs)
loss = criterion(y_pred, labels)
print(epoch, i, loss.item())
optimizer.zero_grad()
loss.backward()
optimizer.step()