研究背景与意义
随着全球人口的不断增长和城市化进程的加快,农业生产面临着前所未有的挑战。如何提高农业生产效率、减少人力成本以及实现智能化管理,成为了现代农业发展的重要课题。在此背景下,计算机视觉技术的快速发展为农业领域的智能化提供了新的解决方案。尤其是实例分割技术,能够对图像中的不同对象进行精确的分割和识别,为农业产品的分类、监测和管理提供了强有力的支持。
本研究旨在基于改进的YOLOv11模型,构建一个高效的蔬菜水果实例分割系统。该系统将针对包括甜椒、胡萝卜、大蒜、山竹、菠萝、火龙果、草莓和西红柿在内的八种常见蔬菜水果进行精确的实例分割。通过使用包含2000张图像的数据集,系统能够有效地识别和分割不同类别的蔬菜水果,为农业生产的智能化管理提供数据支持。
实例分割技术的应用,不仅可以提高农产品的分类精度,还能够在采摘、运输和销售等环节中实现更高效的管理。例如,通过对果蔬的实时监测,农民可以及时了解作物的生长状态,合理安排采摘时间,从而提高产量和质量。此外,实例分割技术还可以应用于病虫害监测,帮助农民及时发现问题并采取相应措施,减少损失。
综上所述,基于改进YOLOv11的蔬菜水果实例分割系统的研究,不仅具有重要的理论意义,也具有广泛的应用前景。通过该系统的实现,将为现代农业的智能化转型提供有力的技术支持,推动农业生产的可持续发展。
图片演示
数据集信息展示
本项目数据集信息介绍
本项目旨在开发一个改进版的YOLOv11实例分割系统,专注于蔬菜和水果的精确识别与分割。为实现这一目标,我们构建了一个专门的数据集,涵盖了八种不同的蔬菜和水果类别,具体包括:甜椒、胡萝卜、大蒜、山竹、菠萝、火龙果、草莓和西红柿。这些类别的选择不仅考虑了它们在市场上的普遍性和经济价值,还兼顾了它们在不同生长阶段和不同环境下的外观特征,从而确保数据集的多样性和代表性。
数据集中每个类别均包含丰富的图像样本,这些样本经过精心挑选,确保在光照、角度和背景等方面的多样性,以提高模型的泛化能力。每张图像都经过标注,包含了物体的边界框和分割掩码,旨在为YOLOv11模型提供高质量的训练数据。这种高质量的标注不仅能够帮助模型更好地学习各类蔬菜和水果的特征,还能有效提高其在实际应用中的识别精度。
在数据集的构建过程中,我们还特别关注了图像的采集环境,确保样本来源于不同的地理区域和气候条件,以增强模型在各种实际场景下的适应性。此外,数据集还包含了不同成熟度和损伤程度的样本,以模拟真实世界中可能遇到的各种情况。这一系列的设计理念旨在通过丰富的数据支持,提升YOLOv11在蔬菜水果实例分割任务中的表现,使其能够在实际应用中更为高效和准确。通过这一数据集的训练,我们期望实现对蔬菜和水果的精准分割,为农业生产、食品安全及相关领域提供有力的技术支持。
项目核心源码讲解(再也不用担心看不懂代码逻辑)
以下是对给定代码的核心部分进行提炼和详细注释的结果:
-- coding: utf-8 --
import torch
import torch.nn as nn
import numpy as np
from torch.nn import Dropout, Softmax, LayerNorm
class Channel_Embeddings(nn.Module):
“”“构建通道嵌入,包括补丁嵌入和位置嵌入。”“”
def init(self, patchsize, img_size, in_channels):
super().init()
img_size = (img_size, img_size) # 将图像大小转换为元组
patch_size = (patchsize, patchsize) # 将补丁大小转换为元组
n_patches = (img_size[0] // patch_size[0]) * (img_size[1] // patch_size[1]) # 计算补丁数量
# 使用最大池化和卷积构建补丁嵌入
self.patch_embeddings = nn.Sequential(
nn.MaxPool2d(kernel_size=5, stride=5),
nn.Conv2d(in_channels=in_channels, out_channels=in_channels, kernel_size=patchsize // 5, stride=patchsize // 5)
)
# 初始化位置嵌入参数
self.position_embeddings = nn.Parameter(torch.zeros(1, n_patches, in_channels))
self.dropout = Dropout(0.1) # dropout层以防止过拟合
def forward(self, x):
"""前向传播函数,计算嵌入。"""
if x is None:
return None
x = self.patch_embeddings(x) # 计算补丁嵌入
x = x.flatten(2) # 将张量展平
x = x.transpose(-1, -2) # 转置以适应后续操作
embeddings = x + self.position_embeddings # 加上位置嵌入
embeddings = self.dropout(embeddings) # 应用dropout
return embeddings
class Attention_org(nn.Module):
“”“实现多头注意力机制。”“”
def init(self, vis, channel_num):
super(Attention_org, self).init()
self.vis = vis # 可视化标志
self.KV_size = sum(channel_num) # 键值对的总通道数
self.channel_num = channel_num # 通道数
self.num_attention_heads = 4 # 注意力头的数量
# 初始化查询、键、值的线性变换
self.query = nn.ModuleList([nn.Linear(c, c, bias=False) for c in channel_num])
self.key = nn.Linear(self.KV_size, self.KV_size, bias=False)
self.value = nn.Linear(self.KV_size, self.KV_size, bias=False)
self.softmax = Softmax(dim=3) # softmax层
self.attn_dropout = Dropout(0.1) # 注意力dropout
self.proj_dropout = Dropout(0.1) # 投影dropout
def forward(self, *embeddings):
"""前向传播函数,计算注意力输出。"""
multi_head_Q = [query(emb) for query, emb in zip(self.query, embeddings) if emb is not None]
multi_head_K = self.key(torch.cat(embeddings, dim=2)) # 将所有嵌入拼接
multi_head_V = self.value(torch.cat(embeddings, dim=2))
# 计算注意力分数
attention_scores = [torch.matmul(Q, multi_head_K) / np.sqrt(self.KV_size) for Q in multi_head_Q]
attention_probs = [self.softmax(score) for score in attention_scores]
# 应用dropout
attention_probs = [self.attn_dropout(prob) for prob in attention_probs]
context_layers = [torch.matmul(prob, multi_head_V) for prob in attention_probs]
# 线性变换输出
outputs = [query_layer.mean(dim=3) for query_layer in context_layers]
return outputs
class Block_ViT(nn.Module):
“”“ViT块,包含注意力层和前馈网络。”“”
def init(self, vis, channel_num):
super(Block_ViT, self).init()
self.attn_norm = LayerNorm(sum(channel_num), eps=1e-6) # 归一化层
self.channel_attn = Attention_org(vis, channel_num) # 注意力机制
self.ffn = nn.Sequential(
nn.Linear(channel_num[0], channel_num[0] * 4),
nn.GELU(),
nn.Linear(channel_num[0] * 4, channel_num[0])
) # 前馈网络
def forward(self, *embeddings):
"""前向传播函数,计算输出。"""
emb_all = torch.cat(embeddings, dim=2) # 拼接所有嵌入
attn_outputs = self.channel_attn(*embeddings) # 计算注意力输出
outputs = [emb + attn for emb, attn in zip(embeddings, attn_outputs)] # 残差连接
return outputs
class Encoder(nn.Module):
“”“编码器,包含多个ViT块。”“”
def init(self, vis, channel_num):
super(Encoder, self).init()
self.layer = nn.ModuleList([Block_ViT(vis, channel_num) for _ in range(1)]) # 多个ViT块
def forward(self, *embeddings):
"""前向传播函数,计算编码输出。"""
for layer in self.layer:
embeddings = layer(*embeddings) # 逐层计算
return embeddings
class ChannelTransformer(nn.Module):
“”“通道变换器,结合嵌入、编码和重构。”“”
def init(self, channel_num=[64, 128, 256, 512], img_size=640, vis=False, patchSize=[40, 20, 10, 5]):
super().init()
self.embeddings = nn.ModuleList([Channel_Embeddings(patch, img_size // (2 ** i), channels)
for i, (patch, channels) in enumerate(zip(patchSize, channel_num))])
self.encoder = Encoder(vis, channel_num) # 编码器
self.reconstruct = nn.ModuleList([Reconstruct(channels, channels, kernel_size=1, scale_factor=(patch, patch))
for patch, channels in zip(patchSize, channel_num)])
def forward(self, en):
"""前向传播函数,计算最终输出。"""
embeddings = [embed(en[i]) for i, embed in enumerate(self.embeddings) if en[i] is not None]
encoded = self.encoder(*embeddings) # 编码
outputs = [recon(enc) + en[i] for i, (recon, enc) in enumerate(zip(self.reconstruct, encoded)) if en[i] is not None]
return outputs
class GetIndexOutput(nn.Module):
“”“获取特定索引的输出。”“”
def init(self, index):
super().init()
self.index = index
def forward(self, x):
"""前向传播函数,返回指定索引的输出。"""
return x[self.index]
代码分析和注释说明
Channel_Embeddings: 负责将输入图像转换为补丁嵌入和位置嵌入。使用卷积和最大池化来处理输入图像,并通过dropout防止过拟合。
Attention_org: 实现多头注意力机制,计算输入嵌入的注意力分数并生成上下文层。使用softmax来归一化注意力分数,并通过dropout来增强模型的鲁棒性。
Block_ViT: 组合注意力层和前馈网络,执行残差连接以保留输入信息。通过层归一化提高训练稳定性。
Encoder: 由多个ViT块组成,负责对输入嵌入进行编码。每个块都应用注意力机制和前馈网络。
ChannelTransformer: 整合所有组件,处理输入图像,生成嵌入,进行编码并重构输出。它负责管理不同层次的特征。
GetIndexOutput: 提供获取特定索引输出的功能,简化后续处理。
这些类和方法共同构成了一个基于通道的变换器架构,适用于图像处理任务。
这个程序文件 CTrans.py 实现了一个基于通道的变换器(Channel Transformer),主要用于图像处理任务。代码中使用了 PyTorch 框架,定义了一系列的神经网络模块,包括嵌入层、重建层、注意力机制、前馈网络等。以下是对各个部分的详细说明。
首先,文件导入了一些必要的库,包括 torch 和 torch.nn,以及其他辅助库如 numpy 和 math。接着,定义了一个名为 Channel_Embeddings 的类,该类用于从输入图像中构建嵌入。它通过最大池化和卷积操作来提取图像的特征,并添加位置嵌入以保留空间信息。前向传播过程中,输入图像经过嵌入处理后,返回的嵌入结果经过 dropout 以增加模型的鲁棒性。
接下来是 Reconstruct 类,它负责将嵌入重建为原始图像的形状。该类使用卷积层和批归一化层,并通过上采样来恢复图像的空间分辨率。
Attention_org 类实现了多头注意力机制。它接受多个嵌入作为输入,并计算注意力分数以生成上下文向量。注意力分数经过 softmax 处理后,结合值向量生成最终的上下文表示。该类还支持可视化注意力权重。
Mlp 类是一个简单的前馈神经网络,包含两个线性层和一个激活函数(GELU)。它用于对嵌入进行非线性变换。
Block_ViT 类是一个变换器块,结合了注意力机制和前馈网络。它首先对输入嵌入进行层归一化,然后通过注意力层和前馈网络进行处理,最后将结果与原始输入相加,形成残差连接。
Encoder 类由多个 Block_ViT 组成,负责对输入的嵌入进行编码。它同样使用层归一化来处理每个通道的嵌入,并在每个块中应用注意力机制。
ChannelTransformer 类是整个模型的核心,负责初始化各个嵌入层、编码器和重建层。它接受图像的不同通道作为输入,经过嵌入、编码和重建后,返回处理后的图像。
最后,GetIndexOutput 类用于从模型的输出中提取特定索引的结果,便于后续处理。
整体来看,这个文件实现了一个复杂的图像处理模型,利用了深度学习中的多种技术,如卷积、注意力机制和前馈网络,适合用于图像分类、分割等任务。模型结构灵活,可以根据输入的通道数和图像大小进行调整。
10.2 kacn_conv.py
以下是代码中最核心的部分,并附上详细的中文注释:
import torch
import torch.nn as nn
class KACNConvNDLayer(nn.Module):
def init(self, conv_class, norm_class, input_dim, output_dim, degree, kernel_size,
groups=1, padding=0, stride=1, dilation=1,
ndim: int = 2, dropout=0.0):
super(KACNConvNDLayer, self).init()
# 初始化输入和输出维度、卷积参数等
self.inputdim = input_dim # 输入通道数
self.outdim = output_dim # 输出通道数
self.degree = degree # 多项式的阶数
self.kernel_size = kernel_size # 卷积核大小
self.padding = padding # 填充
self.stride = stride # 步幅
self.dilation = dilation # 膨胀
self.groups = groups # 分组卷积的组数
self.ndim = ndim # 数据的维度(1D, 2D, 3D)
self.dropout = None # Dropout层
# 根据维度选择合适的Dropout层
if dropout > 0:
if ndim == 1:
self.dropout = nn.Dropout1d(p=dropout)
elif ndim == 2:
self.dropout = nn.Dropout2d(p=dropout)
elif ndim == 3:
self.dropout = nn.Dropout3d(p=dropout)
# 验证分组参数的有效性
if groups <= 0:
raise ValueError('groups must be a positive integer')
if input_dim % groups != 0:
raise ValueError('input_dim must be divisible by groups')
if output_dim % groups != 0:
raise ValueError('output_dim must be divisible by groups')
# 初始化归一化层
self.layer_norm = nn.ModuleList([norm_class(output_dim // groups) for _ in range(groups)])
# 初始化多项式卷积层
self.poly_conv = nn.ModuleList([conv_class((degree + 1) * input_dim // groups,
output_dim // groups,
kernel_size,
stride,
padding,
dilation,
groups=1,
bias=False) for _ in range(groups)])
# 注册一个缓冲区,用于存储多项式的阶数
arange_buffer_size = (1, 1, -1,) + tuple(1 for _ in range(ndim))
self.register_buffer("arange", torch.arange(0, degree + 1, 1).view(*arange_buffer_size))
# 使用Kaiming均匀分布初始化卷积层的权重
for conv_layer in self.poly_conv:
nn.init.normal_(conv_layer.weight, mean=0.0, std=1 / (input_dim * (degree + 1) * kernel_size ** ndim))
def forward_kacn(self, x, group_index):
# 前向传播,处理每个组的输入
x = torch.tanh(x) # 应用tanh激活函数
x = x.acos().unsqueeze(2) # 计算反余弦并增加一个维度
x = (x * self.arange).flatten(1, 2) # 乘以阶数并展平
x = x.cos() # 计算余弦值
x = self.poly_conv[group_index](x) # 通过对应的卷积层
x = self.layer_norm[group_index](x) # 归一化
if self.dropout is not None:
x = self.dropout(x) # 应用Dropout
return x
def forward(self, x):
# 前向传播,处理所有组的输入
split_x = torch.split(x, self.inputdim // self.groups, dim=1) # 按组分割输入
output = []
for group_ind, _x in enumerate(split_x):
y = self.forward_kacn(_x.clone(), group_ind) # 对每个组调用forward_kacn
output.append(y.clone()) # 保存输出
y = torch.cat(output, dim=1) # 合并所有组的输出
return y
代码说明:
KACNConvNDLayer类:这是一个自定义的卷积层,支持多维卷积(1D、2D、3D),并结合了多项式卷积和归一化。
初始化方法:设置输入输出维度、卷积参数、分组数等,并初始化相应的层。
forward_kacn方法:实现了单组输入的前向传播,包含激活、卷积和归一化等步骤。
forward方法:处理整个输入,通过分组进行前向传播,并合并输出。
该代码的设计允许灵活的卷积操作,并结合了多项式特性,适用于复杂的神经网络架构。
这个程序文件定义了一个名为 kacn_conv.py 的深度学习模块,主要用于实现一种特殊的卷积层,称为 KACN(Kacn Activation Convolutional Network)卷积层。文件中包含了一个基类 KACNConvNDLayer 和三个子类 KACNConv3DLayer、KACNConv2DLayer 和 KACNConv1DLayer,分别用于处理三维、二维和一维的卷积操作。
在 KACNConvNDLayer 类的构造函数中,首先初始化了一些卷积层所需的参数,如输入维度、输出维度、卷积核大小、步幅、填充、扩张率等。该类支持分组卷积,通过 groups 参数来指定分组的数量,并确保输入和输出维度能够被分组数整除。此外,如果设置了 dropout 参数,则根据维度选择相应的 dropout 类型。
该类的核心功能在于 forward_kacn 方法,它实现了 KACN 的前向传播逻辑。输入数据首先经过双曲正切激活函数处理,然后进行反余弦变换,并通过预先定义的缓冲区 arange 进行线性变换,最后经过多项式卷积层和层归一化处理。如果启用了 dropout,则在最后应用 dropout。
forward 方法则负责将输入数据按组进行分割,并依次调用 forward_kacn 方法处理每个组的输入,最终将所有组的输出拼接在一起。
接下来的三个子类分别继承自 KACNConvNDLayer,并为不同维度的卷积层提供了具体的实现。每个子类在初始化时调用父类的构造函数,并传入相应的卷积和归一化类(如 nn.Conv1d、nn.Conv2d、nn.Conv3d 和 nn.BatchNorm1d、nn.BatchNorm2d、nn.BatchNorm3d),从而实现一维、二维和三维卷积的功能。
总体来说,这个文件提供了一种灵活的卷积层实现,能够处理不同维度的输入数据,并通过 KACN 的特定激活和卷积机制来增强模型的表达能力。
10.3 mamba_yolo.py
以下是代码中最核心的部分,并附上详细的中文注释:
import torch
import torch.nn as nn
from einops import rearrange
class LayerNorm2d(nn.Module):
“”“二维层归一化类”“”
def init(self, normalized_shape, eps=1e-6, elementwise_affine=True):
super().init()
# 初始化LayerNorm,normalized_shape为需要归一化的形状
self.norm = nn.LayerNorm(normalized_shape, eps, elementwise_affine)
def forward(self, x):
# 将输入x的形状从 (B, C, H, W) 转换为 (B, H, W, C)
x = rearrange(x, 'b c h w -> b h w c').contiguous()
# 进行归一化
x = self.norm(x)
# 将形状转换回 (B, C, H, W)
x = rearrange(x, 'b h w c -> b c h w').contiguous()
return x
class CrossScan(torch.autograd.Function):
“”“交叉扫描操作的自定义函数”“”
@staticmethod
def forward(ctx, x: torch.Tensor):
B, C, H, W = x.shape
ctx.shape = (B, C, H, W)
# 创建一个新的张量,用于存储交叉扫描的结果
xs = x.new_empty((B, 4, C, H * W))
# 将x展平并存储在xs的不同位置
xs[:, 0] = x.flatten(2, 3) # 原始顺序
xs[:, 1] = x.transpose(dim0=2, dim1=3).flatten(2, 3) # 交换H和W
xs[:, 2:4] = torch.flip(xs[:, 0:2], dims=[-1]) # 反转前两个维度
return xs
@staticmethod
def backward(ctx, ys: torch.Tensor):
# 反向传播时的计算
B, C, H, W = ctx.shape
L = H * W
# 将ys的前两个部分相加,并进行形状转换
ys = ys[:, 0:2] + ys[:, 2:4].flip(dims=[-1]).view(B, 2, -1, L)
y = ys[:, 0] + ys[:, 1].view(B, -1, W, H).transpose(dim0=2, dim1=3).contiguous().view(B, -1, L)
return y.view(B, -1, H, W)
class SelectiveScanCore(torch.autograd.Function):
“”“选择性扫描核心操作的自定义函数”“”
@staticmethod
@torch.cuda.amp.custom_fwd
def forward(ctx, u, delta, A, B, C, D=None, delta_bias=None, delta_softplus=False, nrows=1, backnrows=1):
# 确保输入张量是连续的
if u.stride(-1) != 1:
u = u.contiguous()
if delta.stride(-1) != 1:
delta = delta.contiguous()
if D is not None and D.stride(-1) != 1:
D = D.contiguous()
if B.stride(-1) != 1:
B = B.contiguous()
if C.stride(-1) != 1:
C = C.contiguous()
# 如果B或C是三维的,增加一个维度
if B.dim() == 3:
B = B.unsqueeze(dim=1)
ctx.squeeze_B = True
if C.dim() == 3:
C = C.unsqueeze(dim=1)
ctx.squeeze_C = True
# 保存上下文中的一些信息
ctx.delta_softplus = delta_softplus
ctx.backnrows = backnrows
# 调用CUDA核心的前向函数
out, x, *rest = selective_scan_cuda_core.fwd(u, delta, A, B, C, D, delta_bias, delta_softplus, 1)
ctx.save_for_backward(u, delta, A, B, C, D, delta_bias, x)
return out
@staticmethod
@torch.cuda.amp.custom_bwd
def backward(ctx, dout, *args):
# 反向传播的计算
u, delta, A, B, C, D, delta_bias, x = ctx.saved_tensors
if dout.stride(-1) != 1:
dout = dout.contiguous()
du, ddelta, dA, dB, dC, dD, ddelta_bias, *rest = selective_scan_cuda_core.bwd(
u, delta, A, B, C, D, delta_bias, dout, x, ctx.delta_softplus, 1
)
return (du, ddelta, dA, dB, dC, dD, ddelta_bias, None, None, None, None)
def cross_selective_scan(x: torch.Tensor, x_proj_weight: torch.Tensor, dt_projs_weight: torch.Tensor, A_logs: torch.Tensor, Ds: torch.Tensor, out_norm: torch.nn.Module = None):
“”“交叉选择性扫描的实现”“”
B, D, H, W = x.shape
D, N = A_logs.shape
K, D, R = dt_projs_weight.shape
L = H * W
# 调用CrossScan进行交叉扫描
xs = CrossScan.apply(x)
# 进行投影
x_dbl = torch.einsum("b k d l, k c d -> b k c l", xs, x_proj_weight)
dts, Bs, Cs = torch.split(x_dbl, [R, N, N], dim=2)
dts = torch.einsum("b k r l, k d r -> b k d l", dts, dt_projs_weight)
# HiPPO矩阵
As = -torch.exp(A_logs.to(torch.float)) # (k * c, d_state)
Ds = Ds.to(torch.float) # (K * c)
# 进行选择性扫描
ys: torch.Tensor = SelectiveScanCore.apply(xs, dts, As, Bs, Cs, Ds)
y: torch.Tensor = CrossMerge.apply(ys)
# 进行归一化
if out_norm is not None:
y = out_norm(y)
return y
class SS2D(nn.Module):
“”“SS2D模块”“”
def init(self, d_model=96, d_state=16, ssm_ratio=2.0, act_layer=nn.SiLU):
super().init()
self.in_proj = nn.Conv2d(d_model, d_model * ssm_ratio, kernel_size=1)
self.out_proj = nn.Conv2d(d_model * ssm_ratio, d_model, kernel_size=1)
self.act = act_layer()
def forward(self, x: torch.Tensor):
x = self.in_proj(x)
x = self.act(x)
x = self.out_proj(x)
return x
class VSSBlock_YOLO(nn.Module):
“”“YOLO中的VSS块”“”
def init(self, in_channels: int, hidden_dim: int, drop_path: float):
super().init()
self.proj_conv = nn.Conv2d(in_channels, hidden_dim, kernel_size=1)
self.ss2d = SS2D(d_model=hidden_dim)
self.drop_path = nn.Dropout(drop_path)
def forward(self, input: torch.Tensor):
input = self.proj_conv(input)
x = self.ss2d(input)
x = self.drop_path(x)
return x
代码核心部分说明:
LayerNorm2d: 实现了二维层归一化,用于对图像的每个通道进行归一化处理。
CrossScan: 实现了交叉扫描操作,将输入张量的不同排列组合进行处理,以便后续的计算。
SelectiveScanCore: 自定义的选择性扫描操作,包含前向和反向传播的实现,主要用于处理时间序列数据。
cross_selective_scan: 结合交叉扫描和选择性扫描的功能,进行数据的处理和归一化。
SS2D: 实现了一个简单的前向投影和后向投影的模块,作为SSM(状态空间模型)的一部分。
VSSBlock_YOLO: YOLO模型中的一个重要模块,结合了投影、选择性扫描和dropout等操作。
这些核心部分共同构成了一个用于图像处理和特征提取的深度学习模块。
这个程序文件 mamba_yolo.py 实现了一个基于深度学习的模型,主要用于计算机视觉任务,特别是目标检测。代码中使用了 PyTorch 框架,并结合了一些自定义的模块和函数来构建模型的各个部分。
首先,文件导入了一些必要的库,包括 torch 和 torch.nn,以及一些辅助库如 einops 和 timm。这些库提供了张量操作、神经网络层以及其他深度学习所需的功能。
接下来,定义了一个 LayerNorm2d 类,它是一个二维的层归一化模块,适用于图像数据。该模块在前向传播中对输入进行维度重排,以便应用层归一化。
autopad 函数用于计算卷积操作所需的填充,以确保输出形状与输入形状相同。
然后,定义了几个自定义的 PyTorch 函数,如 CrossScan 和 CrossMerge,它们实现了特定的张量操作。这些操作在模型中用于处理输入特征图,进行跨通道的选择性扫描和合并。
SelectiveScanCore 类实现了选择性扫描的核心功能,这是一个重要的操作,用于在模型中处理输入数据。它包含前向和反向传播的方法,利用 CUDA 加速计算。
cross_selective_scan 函数是一个封装函数,调用 SelectiveScanCore 来执行选择性扫描,并处理输入和输出的维度。
接下来,定义了 SS2D 类,这是一个主要的模块,包含多个层和操作,包括输入投影、卷积层、选择性扫描等。该模块的构造函数接受多个参数以配置模型的各个方面,如模型维度、状态维度、激活函数等。
RGBlock 和 LSBlock 类分别实现了不同的块结构,用于构建模型的深层网络。它们使用卷积层和激活函数来处理输入特征,并通过残差连接来增强信息流。
XSSBlock 和 VSSBlock_YOLO 类则是更复杂的模块,结合了选择性扫描和其他操作,形成更深层次的网络结构。这些模块通过组合不同的操作来提取和融合特征。
SimpleStem 类是模型的初始部分,负责将输入图像通过卷积层进行特征提取。VisionClueMerge 类则用于将不同分辨率的特征图合并,以便于后续处理。
整体来看,这个文件实现了一个复杂的神经网络结构,结合了选择性扫描和深度卷积网络的优点,旨在提高目标检测等计算机视觉任务的性能。通过模块化的设计,代码易于扩展和修改,适合在不同的应用场景中使用。
源码文件
源码获取
可以直接加我下方的微信哦!