Python做多元线性回归(解决多重共线性和异方差问题)

本文适用对象:

  1. 具备数据,需要研究某个被解释变量和多个解释变量之间的关系
  2. 对python不太熟悉,但是具有浓厚兴趣(否则会选择更简单的工具,如Eviews,stata等)

话不多说,直接切入主题。

首先,我们要大致了解多元线性回归的一般步骤:

  1. 数据导入和清洗
  2. 首次回归
  3. 检测多重共线性,再次回归
  4. 检测异方差性,再次回归
  5. 最后,得到一个相对不错的结果。本人后期将更新“内生解释变量问题”的python解决

下面给大家直接上代码,里面给出了详细的注释。如有错误请私信指正!

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from statsmodels.formula.api import ols


#数据读取
def dataImport(fileName):
    _path="D:/PythonProjects/Data/"
    data=pd.read_excel(_path+fileName+'.xlsx')
    return data

#方差膨胀因子检测
def vif(df,col_i):
    '''
    :param df: 整份数据
    :param col_i: 被检测的因子
    :return:方差膨胀因子
    '''
    cols=list(df.columns)
    cols.remove(col_i)
    formula=col_i+'~'+'+'.join(cols)
    r2=ols(formula,df).fit().rsquared
    return 1./(1.-r2)

def main():
    #导入数据,并简要查看数据
    df=dataImport('exercise02')
    print(df.info())
    print(df.head())

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值