669. 修剪二叉搜索树
中等
给你二叉搜索树的根节点 root ,同时给定最小边界low 和最大边界 high。通过修剪二叉搜索树,使得所有节点的值在[low, high]中。修剪树 不应该 改变保留在树中的元素的相对结构 (即,如果没有被移除,原有的父代子代关系都应当保留)。 可以证明,存在 唯一的答案 。
所以结果应当返回修剪好的二叉搜索树的新的根节点。注意,根节点可能会根据给定的边界发生改变。
class Solution {
public TreeNode trimBST(TreeNode root, int low, int high) {
return traversal(root, low, high);
}
public TreeNode traversal(TreeNode root, int low, int high) {
if (root == null) return null;
// root.val 小于low,但是在root右子树大于root.val,所以右子树中可能还存在满足条件的
if (root.val < low) {
return traversal(root.right, low, high); // 返回右子树查找结果,直接丢弃左子树
}
// root.val 大于low,但是在root左子树小于root.val,所以左子树中可能还存在满足条件的
if (root.val > high) {
return traversal(root.left, low, high); // 返回左子树查找结果,直接丢弃右子树
}
// 剩下的就是在[low, high] 区间的了,但是它的左右子树不能保证还满足要求,继续递归
root.left = traversal(root.left, low, high);
root.right = traversal(root.right, low, high);
return root;
}
}
108. 将有序数组转换为二叉搜索树
简单
给你一个整数数组 nums ,其中元素已经按 升序 排列,请你将其转换为一棵 高度平衡 二叉搜索树。
高度平衡 二叉树是一棵满足「每个节点的左右两个子树的高度差的绝对值不超过 1 」的二叉树。
// 独立做出来了,代码也比较简洁
class Solution {
public TreeNode sortedArrayToBST(int[] nums) {
int numsLen = nums.length;
if (numsLen == 0) return null;
return preOrder(nums, 0, numsLen - 1); // 这里是numsLen - 1,不是numsLen
}
public TreeNode preOrder(int[] nums, int left, int right){
if (left > right) return null;
int mid = left + (right - left) / 2;
TreeNode newNode = new TreeNode(nums[mid]);
newNode.left = preOrder(nums, left, mid - 1);
newNode.right = preOrder(nums, mid + 1, right);
return newNode;
}
}
538. 把二叉搜索树转换为累加树
已解答
中等
给出二叉 搜索 树的根节点,该树的节点值各不相同,请你将其转换为累加树(Greater Sum Tree),使每个节点 node 的新值等于原树中大于或等于 node.val 的值之和。
提醒一下,二叉搜索树满足下列约束条件:
节点的左子树仅包含键 小于 节点键的节点。
节点的右子树仅包含键 大于 节点键的节点。
左右子树也必须是二叉搜索树
// 我写的笨办法,利用了BST中序遍历是有序数组理论的基础, 其实累加那里如果从后往前加的话也会快很多
class Solution {
List<Integer> treeNums = new ArrayList<>();
int index = 0;
public TreeNode convertBST(TreeNode root) {
inOrder(root);
inOrderChange(root);
return root;
}
// 中序遍历并记录
public void inOrder(TreeNode node) {
if (node == null) return;
inOrder(node.left);
treeNums.add(node.val);
inOrder(node.right);
}
// 中序遍历并改变
public void inOrderChange(TreeNode node) {
if (node == null) return;
inOrderChange(node.left);
node.val = getChangeNum(index);
index++;
inOrderChange(node.right);
}
public int getChangeNum(int n) {
int sum = 0;
for (int i = n; i < treeNums.size(); i++) {
sum += treeNums.get(i);
}
return sum;
}
}
// 正确做法
class Solution {
TreeNode pre = null;
public TreeNode convertBST(TreeNode root) {
convertInOrder(root);
return root;
}
public void convertInOrder(TreeNode node) {
if (node == null) return;
convertInOrder(node.right);
if (pre != null) { //只要不是最右边那个节点
node.val += pre.val;
}
pre = node;
convertInOrder(node.left);
}
}