day53 动态规划part10(121. 买卖股票的最佳时机 122. 买卖股票的最佳时机 II)

文章讲述了使用动态规划解决股票买卖问题,通过分析持有和不持有股票两种状态,确定了递推公式,强调了在动态规划中的dp[i][0]和dp[i][1]的含义,并与贪心算法进行了对比。最后给出了两种方法的代码实现:动态规划求最大利润和贪心算法求最小购入点差价。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

121. 买卖股票的最佳时机

简单
给定一个数组 prices ,它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。

你只能选择 某一天 买入这只股票,并选择在 未来的某一个不同的日子 卖出该股票。设计一个算法来计算你所能获取的最大利润。

返回你可以从这笔交易中获取的最大利润。如果你不能获取任何利润,返回 0 。

某个网友思路:

在这里插入图片描述

我的思路:股票只能买卖一次。 其实仔细一琢磨,这和贪心也没啥区别啊。我觉得思路很抽象,不如贪心直接明了,但是只要递推的公式原理没问题,其实是可以推出结果的。

动规五部曲分析如下:

①确定dp数组(dp table)以及下标的含义

dp[i][0] 表示第i天持有股票所得最多现金 ,这里可能有同学疑惑,本题中只能买卖一次,持有股票之后哪还有现金呢?

其实一开始现金是0,那么加入第i天买入股票现金就是 -prices[i], 这是一个负数。

dp[i][1] 表示第i天不持有股票所得最多现金

注意这里说的是“持有”,“持有”不代表就是当天“买入”!也有可能是昨天就买入了,今天保持持有的状态

很多同学把“持有”和“买入”没区分清楚。

在下面递推公式分析中,我会进一步讲解。

②确定递推公式

如果第i天持有股票即dp[i][0], 那么可以由两个状态推出来

第i-1天就持有股票,那么就保持现状,所得现金就是昨天持有股票的所得现金 即:dp[i - 1][0]
第i天买入股票,所得现金就是买入今天的股票后所得现金即:-prices[i]
那么dp[i][0]应该选所得现金最大的,所以dp[i][0] = max(dp[i - 1][0], -prices[i]); (其实就相当于选最便宜的价格)

如果第i天不持有股票即dp[i][1], 也可以由两个状态推出来

第i-1天就不持有股票,那么就保持现状,所得现金就是昨天不持有股票的所得现金 即:dp[i - 1][1]
第i天卖出股票,所得现金就是按照今天股票价格卖出后所得现金即:prices[i] + dp[i - 1][0]
同样dp[i][1]取最大的,dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]); (其实就相当于选最高的售卖价格)

这样递推公式我们就分析完了

③dp数组如何初始化

由递推公式 dp[i][0] = max(dp[i - 1][0], -prices[i]); 和 dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);可以看出

其基础都是要从dp[0][0]和dp[0][1]推导出来。

那么dp[0][0]表示第0天持有股票,此时的持有股票就一定是买入股票了,因为不可能有前一天推出来,所以dp[0][0] -= prices[0];

dp[0][1]表示第0天不持有股票,不持有股票那么现金就是0,所以dp[0][1] = 0;

④确定遍历顺序

从递推公式可以看出dp[i]都是由dp[i - 1]推导出来的,那么一定是从前向后遍历。

⑤举例推导dp数组

// 动规
class Solution {
    public int maxProfit(int[] prices) {
        int len = prices.length;
        // dp[i][0] 表示第i天持有股票所得最多现金,要么以前买,要么今天买
        // dp[i][1] 表示第i天不持有股票所得最多现金,要么以前卖了,要么今天卖
        int dp[][] = new int[len][2];
        dp[0][0] = -prices[0];
        dp[0][1] = 0;

        for (int i = 1; i < len; i++) {
            dp[i][0] = Math.max(dp[i - 1][0], -prices[i]);
            dp[i][1] = Math.max(dp[i - 1][1], prices[i] + dp[i - 1][0]); // 注意不是Math.max(dp[i - 1][1], prices[i] - dp[i][0]),注意买卖不能在同一天,当天要卖出,得前一天持有才行
        }

        return dp[len - 1][1];
    }
}
// 贪心
// 总结一下思路就是:如果第i天卖出股票,则最大利润为(该天的股价-前面天数中最小的股价),然后与已知的最大利润比较,如果大于则更新当前最大利润的值。
class Solution {
    public int maxProfit(int[] prices) {
        // 找到一个最小的购入点
        int low = Integer.MAX_VALUE;
        // res不断更新,直到数组循环完毕
        int res = 0;
        for(int i = 0; i < prices.length; i++){
            low = Math.min(prices[i], low);
            res = Math.max(prices[i] - low, res);
        }
        return res;
    }
}

122. 买卖股票的最佳时机 II

中等

给你一个整数数组 prices ,其中 prices[i] 表示某支股票第 i 天的价格。

在每一天,你可以决定是否购买和/或出售股票。你在任何时候 最多 只能持有 一股 股票。你也可以先购买,然后在 同一天 出售。

返回 你能获得的 最大 利润 。

思路:

在这里插入图片描述

如果第i天不持有股票即dp[i][1]的情况, 依然可以由两个状态推出来 ①第i-1天就不持有股票,那么就保持现状,所得现金就是昨天不持有股票的所得现金 即:dp[i - 1][1] ②第i天卖出股票,所得现金就是按照今天股票价格卖出后所得现金即:prices[i] + dp[i - 1][0],这里为什么不是prices[i] + dp[i ][0],即今天持有股票的现金加上今天的卖价呢?不是说可以今天买,今天卖的吗?问题是今天买和今天卖的价格都是一样的,等于白操作了。prices[i] + dp[i ][0]和prices[i] + dp[i - 1][0]都能通过。鉴于手里只能持有一只股票,所以没有人会当天卖当天卖,建议采用prices[i] + dp[i - 1][0]

class Solution {
    public int maxProfit(int[] prices) {
        int len = prices.length;
        // dp[i][0] 表示第i天持有股票所得最多现金,要么以前买,要么今天买
        // dp[i][1] 表示第i天不持有股票所得最多现金,要么以前卖了,要么今天卖
        int dp[][] = new int[len][2];
        dp[0][0] = -prices[0];
        dp[0][1] = 0;

        for (int i = 1; i < len; i++) {
            dp[i][0] = Math.max(dp[i - 1][0], dp[i - 1][1] - prices[i]);
            dp[i][1] = Math.max(dp[i - 1][1], prices[i] + dp[i - 1][0]); // 注意买卖可以在同一天
        }

        return dp[len - 1][1];
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值