day58 动态规划part15(392. 判断子序列115. 不同的子序列)

文章讲述了如何使用双指针和动态规划的方法判断字符串s是否为字符串t的子序列,以及如何计算s中有多少种不同的t的子序列。重点讨论了两种算法,并提到与最长公共子序列问题的联系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

392. 判断子序列

简单
给定字符串 s 和 t ,判断 s 是否为 t 的子序列。

字符串的一个子序列是原始字符串删除一些(也可以不删除)字符而不改变剩余字符相对位置形成的新字符串。(例如,"ace"是"abcde"的一个子序列,而"aec"不是)。

进阶:

如果有大量输入的 S,称作 S1, S2, … , Sk 其中 k >= 10亿,你需要依次检查它们是否为 T 的子序列。在这种情况下,你会怎样改变代码?

难点:这题不就是要求最长公共子序列是否等于s的长度吗?

// 这是我自己写的解法,没用dp,感觉似乎有点傻,其实是一种双指针的思路
class Solution {
    public boolean isSubsequence(String s, String t) {
        if (s.length() > t.length()) return false;

        int start = 0;

        for (int i = 0; i < s.length(); i++) {
            if (start >= t.length()) return false;
            for (int j = start; j < t.length(); j++) {
                if (s.charAt(i) == t.charAt(j)) {
                    start = j + 1;
                    break;
                }
                if (j == t.length() - 1) return false;
            }
        }
        return true;
    }
}
// 动规方法
// 递推公式:可以发现和 1143.最长公共子序列 (opens new window)的递推公式基本那就是一样的,区别就是 本题 如果删元素一定是字符串t,而 1143.最长公共子序列 是两个字符串都可以删元素。
class Solution {
    public boolean isSubsequence(String s, String t) {
        int lenS = s.length();
        int lenT = t.length();
        if (lenS > lenT) return false;

        int[][] dp = new int[lenT + 1][lenS + 1]; // dp[i][j] 表示分别以i 和 j结尾的字符串相同子序列的长度

        for (int i = 1; i <= lenT; i++) {
            for (int j = 1; j <= lenS; j++) {
                if (t.charAt(i - 1) == s.charAt(j - 1)) {
                    dp[i][j] = dp[i - 1][j - 1] + 1;
                } else {
                    dp[i][j] = Math.max(dp[i- 1][j], dp[i][j - 1]);
                }
            }
        }

        return dp[lenT][lenS] == lenS;
    }
}

115. 不同的子序列

困难

给你两个字符串 s 和 t ,统计并返回在 s 的 子序列 中 t 出现的个数,结果需要对 109 + 7 取模。

在这里插入图片描述

dp[i - 1][j]令人迷惑不解,参照下面:

在这里插入图片描述

class Solution {
    public int numDistinct(String s, String t) {
        int [][] dp = new int[s.length() + 1][t.length() + 1]; // dp[i][j] 代表 T 前 i 字符串可以由 S j 字符串组成最多个数.
        for (int i = 0; i <= s.length(); i++) {
            dp[i][0] = 1; // 目标字符t为空字符,只要把s全删了就可以组成,所以为1
        }

        for (int i = 1; i <= s.length(); i++) {
            for (int j = 1; j <= t.length(); j++) {
                if (s.charAt(i - 1) == t.charAt(j - 1)) { // 如果取出的这个字符相等,
                //那么就等于去掉这两个相等的字符(为了得到前面相等的数量)加上去掉s的一个字符,
                //再和t比较。本质来说,就是取或者不取s.charAt(i - 1)
                    dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j]; // 取的情况加上不取s.charAt(i - 1)的情况
                } else { // 如果取出的这个字符不相等
                    dp[i][j] = dp[i - 1][j];
                }
            }
        }
        return dp[s.length()][t.length()];
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值