论文题目:Knowledge-Enhanced Hierarchical Graph Transformer Network for Multi-Behavior Recommendation
论文来源:2021 AAAI
论文源码:https://github.com/akaxlh/KHGT
1.前言
该论文提出了一种分级图transformer方法做多行为推荐。研究动机:现有大多数推荐系统只针对于单一类型的用户-商品交互,忽略了复杂的用户-商品交互关系(例如购买、点击、浏览、收藏),也忽略了商品之间的交互关系(例如属于同一品牌、与相同用户有相同行为。针对该问题提出KHGT模型,研究推荐系统中用户和商品之间多种类型的交互。
2.问题定义
给定user-item的多行为交互图G_u,以及item-item的多关系图G_v
预测用户u_i和商品v_j在行为类型k下交互的概率
3.模型
3.1 注意力机制的异构信息传递
这一部分首先对于特定类型的交互,进行单