CVPR2024-5-语义匹配“Learning SO(3)-Invariant Semantic Correspondence via Local Shape Transform”

文章摘要:建立形状之间精确的3d对应关系是计算机视觉和机器人深刻影响的关键挑战。然而,现有的针对该问题的自我监督方法假设输入形状对齐完美,限制了它们在现实世界中的适用性。在这项工作中,我们引入了一种新的自监督旋转不变 3d 对应学习器,具有局部形状变换,称为 rist,它学习即使在具有挑战性的类内变化和任意方向下建立形状之间的密集对应关系。具体地说,rist学习动态地为每个点制定一个so(3)不变的局部形状变换,它将输入形状的so(3)等变全局形状描述符映射到局部形状描述符。这些局部形状描述符作为解码器的输入,以促进点云自重构和跨重构。我们提出的自我监督训练管道鼓励来自不同形状的语义对应点映射到相似的局部形状描述符,使rist能够建立密集的逐点对应。rist 展示了给定同一类别的任意旋转点云对的 3d 部分标签传输和语义关键点传输的最先进性能,大大优于现有方法。

结论:我们介绍了 rist,这是一种新颖的自监督学习器,用于跨同一类别形状的密集 3d 语义匹配,即使具有任意旋转。其鲁棒性源于我们对so(3)等变和不变表示的创新使用,实现了保持旋转等方差的动态局部形状变换。这些将全局描述符映射到局部描述符,促进密集通信的建立。我们的方法在部分标签和关键点转移等任务上优于现有的方法,增强了计算机视觉和机器人的适用性,例如ar/vr和纹理映射。未来的研究可以集中在提高常见腐败下的鲁棒性。

目前存在的问题:

  • 密集3d对应主要挑战之一是难以注释密集的形状间对应关系,这限制了强监督学习范式的利用
  • 自监督学习方法来解决这个问题重要限制是它们关于输入形状对对齐的严格假设,输入点云对之间建立对应关系是精确对齐的
  • 对象扫描和形状实例可以任意定向,当面对旋转的输入形状时,现有方法的性能会显着下降

文章主要研究内容:

研究的编码器定义逐点局部形状变换不仅有效地来捕获局部形状语义和几何形状,而且对so(3)空间中的变换具有鲁棒性。

之前的研究:
  • 自监督的方式学习点云表示的最突出方向之一是通过点云的自重建[23,38,43]进行学习
  • 旋转鲁棒性的传统方法是在训练和推理过程中使用旋转增强,人们提出了各种方法来产生点云表示,这些表示对输入的旋转是等变的[2,6,29,32]或不变的[14,18,19,31,37],证明了任意输入旋转下性能的提高。
  • 用类内变化标记点云对之间的密集对应注释是不可行<
### 关于CVPR 2024会议中的EMCAD主题 CVPR(计算机视觉和模式识别会议)主要关注计算机视觉及其应用领域,而EMCAD(电磁兼容性和天线设计)通常属于电气工程范畴。因此,在CVPR会议上专门针对EMCAD的主题较少见[^1]。 然而,随着技术的发展,交叉学科的研究逐渐增多。某些涉及图像处理、传感器融合以及无线通信的技术可能间接关联到EMCAD方面的工作。例如: - **多模态感知**:利用不同类型的传感器获取环境信息,其中一些传感器可能会涉及到射频信号的接收与发射,进而牵涉到电磁兼容性问题。 - **自动驾驶车辆**:这类研究不仅依赖摄像头等光学设备,还需要雷达和其他基于无线电波的探测手段,这些都离不开良好的电磁兼容设计来确保系统的稳定运行。 对于希望了解更具体的EMCAD相关内容,建议查阅IEEE Transactions on Electromagnetic Compatibility 或者Antennas and Propagation Society International Symposium (APSURSI)等相关专业期刊和会议论文集,因为这些都是专注于电磁学及天线设计的专业出版物[^3]。 如果确实存在对CVPR中有关联性的特定话题感兴趣的情况,则可以考虑探索如下方向: - 结合机器学习算法优化天线阵列的设计参数; - 利用电磁仿真数据训练神经网络模型预测干扰源位置或强度分布; ```python # 示例代码展示如何通过Python调用API查询学术文献数据库 import requests def search_papers(keyword, year=2024): url = f"https://api.example.com/paper?query={keyword}&year={year}" response = requests.get(url) return response.json() papers = search_papers(&#39;EMCAD CVPR&#39;) print(papers) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值