文章摘要:点云滤波是一项基本的3d视觉任务,其目的是在恢复底层清洁表面的同时去除噪声。最先进的方法通过将噪声点沿随机轨迹移动到干净的表面来消除噪声。这些方法通常需要训练目标和/或后处理过程中的正则化,以确保保真度。在本文中,我们介绍了 directpcf,这是一种新的基于深度学习的方法,用于点云过滤。它的工作原理是沿着直线路径移动噪声点,从而减少离散化误差,同时确保更快地收敛到干净的表面。我们将噪声补丁建模为高噪声补丁变体与其干净对应物之间的中间状态,并设计速度模块来推断从前者到后者的恒定流速。这个恒定的流导致直接过滤轨迹。此外,我们引入了一个距离模块,该模块使用估计的距离标量缩放直线轨迹,以获得在干净表面附近的收敛。我们的网络是轻量级的,只有 ∼ 530k 参数,是迭代 pfn 的 17%(最近的点云过滤网络)。对合成数据和真实世界数据的广泛实验表明我们的方法取得了最先进的结果。我们的方法还展示了过滤点的良好分布,而不需要正则化。实现代码可以在以下网址找到:https://github.com/ddsdedri/straightpcf。
结论:
最近基于深度学习的滤波方法专注于沿随机路径移动噪声点,从输入点云中去除噪声。我们提出了第一项考虑沿直线路径的滤波点的研究,导致离散化误差更小,滤波迭代次数更少。这种轻量级方法虽然参数高效,但在损失函数或后处理中不需要任何正则化的情况下,提供了更接近地面真实分布的过滤点分布。我们的方法在标准过滤指标的多个合成数据集和真实数据集上取得了最先进的性能,展示了它的优越性和有效性。
目前存在的问题:
文章主要研究内容:
之前的研究:
下