文章摘要:在点云场景理解领域,特别是在室内场景中,物体按照人类习惯排列,导致某些语义的对象紧密定位和显示显著的对象间相关性。这可以为神经网络创建利用这些强依赖关系的趋势,绕过单个对象模式。为了应对这一挑战,我们引入了一种新的自我监督学习 (ssl) 策略。我们的方法利用对象模式和上下文线索来产生稳健的特征。它首先制定对象交换策略,其中大小相当的对象对在不同的场景中交换,有效地解开强上下文依赖关系。随后,我们引入了一种上下文感知的特征学习策略,该策略通过聚合各种场景中的对象特征来编码对象模式,而不依赖于它们的特定上下文。我们广泛的实验证明了我们方法的有效性优于现有的 ssl 技术,进一步表明它对环境变化具有更好的鲁棒性。此外,我们通过将预训练模型转移到不同的点云数据集来展示我们方法的适用性。
结论:在本文中,我们为点云引入了一个 ssl 框架,旨在捕获对噪声和上下文变化具有鲁棒性的对象特征。它首先在不同的场景之间交换大小相当的对象,打破强烈的对象间纠缠,然后利用交换的对象和剩余对象学习对象模式和上下文线索。总的来说,我们的方法提供了实用的工具来学习室内场景的鲁棒上下文感知表示特征。我们的实验表明,我们的方法在室内点云上优于以往的ssl方法。
目前存在的问题:
文章主要研究内容:
之前的研究:
下