文章摘要:旋转不变性是点形状分析的一个重要要求。为了实现这一点,当前最先进的方法试图通过学习或定义局部参考帧 (lrf) 来构建局部旋转不变表示。虽然高效,但这些基于lrf的方法存在局部几何关系的扰动,导致局部旋转不变性次优。为了缓解这个问题,我们提出了一种局部一致变换(locotrans)学习策略。具体来说,我们首先通过考虑lrf中两个轴的对称性来构造局部一致的参考帧(lcrf)。与之前的 lrfs 相比,我们的 lcrf 能够通过执行局部一致变换更好地保留局部几何关系。然而,由于一致性只存在于局部区域,因此在网络的中间层仍然会丢失相对位姿信息。我们通过开发相对位姿恢复 (rpr) 模块来减轻这种相对位姿问题。Rpr旨在恢复相邻变换斑块之间的相对姿态。配备 lcrf 和 rpr,我们的 locotrans 能够学习局部一致的变换并保留局部几何,这有利于旋转不变学习。在形状分类和部分分割任务和消融的任意旋转下,竞争性能可以证明我们方法的有效性。代码将在athttps://github.com/wdttt/locotrans上公开获取。
结论:在本文中,我们提出了局部一致变换(locotrans)学习来有效地实现局部旋转不变表示。locotrans 建立在等变网络之上,由两个模块组成。具体来说,lcrf 构造局部一致的参考帧,以在通过 lrf 执行转换时保留局部几何关系。然而,相邻点之间的相对姿态仍然会发生变化。为了进一步恢复相对位姿,我们的rpr模块利用等变网络对原始局部坐标的姿态信息进行编码,并将姿态信息与相邻特征融合。实验结果表明了我们方法的有效性。
<
2024CVPR-14-旋转不变点云分析Local-consistent Transformation Learning for Rotation-invariant Point Cloud Anal
最新推荐文章于 2025-01-08 11:27:40 发布