文章摘要:
使用神经网络对对象动力学进行建模是一个重要的问题,有着广泛的应用。最近的工作是基于图神经网络。然而,物理发生在 3d 空间中,其中几何信息可能在建模物理现象方面发挥着重要作用。在这项工作中,我们提出了一种基于连续点卷积的新型 u-net 架构,该架构自然地嵌入了来自 3d 坐标的信息,并允许具有已建立的下采样和上采样过程的多尺度特征表示。下采样点云中的瓶颈层导致更好的远程交互建模。此外,点卷积的灵活性允许我们的方法从网格顶点推广到稀疏采样的点,并在网格面上的重要交互点上动态生成特征。实验结果表明,我们的方法显着提高了最先进的技术,尤其是在需要精确重力或碰撞推理的情况下。结论:
在本文中,我们提出了一种基于无集结构的方法,该结构具有连续的基于点的卷积来建模对象动力学。我们将pointconv扩展到对象pointconv和关系pointconv,它们分别学习对象内部和对象间的影响。此外,我们提出了一种方法,通过在网格面上动态选择交互点并使用pointconv在这些交互点上插值特征,在顶点特征附近的网格之间传播信息。实验结果表明,我们的方法优于最先进的图神经网络方法,特别是在涉及对重力和碰撞进行推理的任务上。我们希望这项工作能够帮助将图神经网络和点云神经网络的社区结合在一起,以便两者都可以采用从另一侧得出的最佳实践。
目前存在的问题:
文章主要研究内容:
之前的研究:
下