文章摘要:
在本文中,我们提出了一种端到端的3d建筑线框重建方法,直接从空中激光雷达点云回归边缘。我们的方法名为参数构建线框重建(pbwr),以航空激光雷达点云和初始边缘实体为输入,充分利用变压器的自注意机制,在没有任何中间步骤(如角点预测)的情况下回归边缘参数。提出了一种基于边缘相似度的边缘非最大抑制(e-nms)模块来去除冗余边缘。此外,利用专用的边缘损失函数来指导 pbwr 在回归边缘参数时,其中简单使用边缘距离损失是不合适的。在我们的实验中,我们在 building3d 数据集上展示了最先进的结果,在入门级数据集边缘准确度上实现了大约 36% 的改进,在高 n 数据集中提高了大约 42%。结论:
在本文中,我们提出了 pbwr,这是一种端到端的线框重建模型,可以直接回归边缘,绕过中间启发式模块进行角点或边缘预测。使用所提出的hausdorff基于距离的相似度算法,得到的参数化边进行二分边匹配。e-nms 利用边缘相似性作为消除冗余正样本边缘的关键参数。此外,提出了一种专门为边缘优化设计的损失函数来指导网络优化和模型生成。在实验中,pbwr 实现了远远超出现有基线的性能。
限制和未来的工作
一个限制是 pbwr 生成的边不是连续连接的边集,如图 8 所示。幸运的是,获得的边集的角紧密定位。因