文章摘要:
现代深度传感器,如激光雷达,通过在场景中扫描激光束来操作,从而产生一个具有显著一维曲线状结构的点云。在这项工作中,我们引入了一种新的点云处理方案和主干,称为曲线云网,它利用了这些传感器固有的曲线状结构。虽然现有的主干丢弃了丰富的1d遍历模式,并且依赖于通用的3d操作,但Curvecloudnet将点云参数化为折线的集合(称为“曲线云”),在点上建立局部表面感知排序。通过沿曲线进行推理,curvecloudnet 捕获轻量级曲线感知先验,以便在几种不同的 3d 环境中高效准确地进行推理。我们在表现出不同 3d 大小和结构的多个合成数据集和真实数据集上评估 curvecloudnet。我们证明了曲线cloudnet在各种分割设置中都优于基于点的和稀疏体素主干,特别是比基于点的替代方案更好地扩展到大场景,同时在稀疏体素替代方案上表现出改进的单目标性能。总之,curvecloudnet是一个高效、准确的主干,可以处理比过去的工作更多的3d环境结论:我们已经描述了一种点云处理方案和主干曲线cloudnet,它引入了曲线级操作,以实现点云分割的准确、高效和灵活的性能。curvecloudnet 在 shapenet、kortx、a2d2、nuscenes 和 kitti 数据集上优于以前的方法,平均而言实现了最佳性能。组合在一起,curvecloudnet是具有各种扫描模式的小规模和大规模场景的统一解决方案。
然而,curvecloudnet 有局限性。
首先,曲线cloudnet只设计用于激光扫描数据,即由于1d激光遍历,具有显式曲线结构的点云。我们相信一个有希望的未来方向是研究可以将曲线cloudnet 8扩展到均匀采样点云的虚拟曲线。此外,我们相信未来的研究可以继续改进曲线操作。虽然我们提出的曲线操作产生了显着的改进,但