分割-trans-3-SPFormer: Enhancing Vision Transformer with Superpixel Representation用超像素表示增强视觉

之前研究存在的问题、论文的出发点:

  • CNN存在局限性,只能捕获局部信息,需要堆叠多个卷积操作和/或额外的操作增加感受野
  • VITS基于补丁的表示捕获了全局交互,但丢失局部细节,例如对象边界。

思考:能不能同时利用局部信息与长距离依赖both preserved local details and effective long-range relationship capture-------超体素---自适应输入,超像素将图像划分为不规则区域,每个区域对具有相似语义的像素进行分组。这种方法允许少量的超像素,使其能够通过自我注意对全局交互进行建模。

文章的主要研究内容:

超像素表示(Superpixel Representation):
结合像素表示和补丁表示的优点。超像素表示通过将图像分割成语义相似的区域,减少了输入的长度,同时保留了图像的细节和上下文信息。
超像素表示通过邻近的超像素(Neighboring Superpixels)和关联矩阵(Association Matrix)来定义像素与超像素之间的关系,从而在保持高分辨率特征的同时,减少了计算复杂度。
超像素交叉注意力机制(Superpixel Cross Attention, SCA):
包括像素到超像素(P2S)和超像素到像素(S2P)的交叉注意力。这种机制通过在局部窗口内更新超像素和像素特征,增强了超像素表示的准确性和全局上下文信息。
SCA模块通过多头的注意力机制来管理超像素之间的交互,利用卷积位置嵌入(Convolution Position Embedding, CPE)来捕捉图像中的空间关系,从而提高了像素与超像素之间的对齐精度。
SPFormer架构:
结合了超像素表示和标准ViT的方法。SPFormer采用了一种双分支结构,一个分支保持高分辨率的密集像素表示,另一个分支专注于低分辨率的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值