之前研究存在的问题、论文的出发点:
- CNN存在局限性,只能捕获局部信息,需要堆叠多个卷积操作和/或额外的操作增加感受野
- VITS基于补丁的表示捕获了全局交互,但丢失局部细节,例如对象边界。
思考:能不能同时利用局部信息与长距离依赖both preserved local details and effective long-range relationship capture-------超体素---自适应输入,超像素将图像划分为不规则区域,每个区域对具有相似语义的像素进行分组。这种方法允许少量的超像素,使其能够通过自我注意对全局交互进行建模。
文章的主要研究内容:
超像素表示(Superpixel Representation):
结合像素表示和补丁表示的优点。超像素表示通过将图像分割成语义相似的区域,减少了输入的长度,同时保留了图像的细节和上下文信息。
超像素表示通过邻近的超像素(Neighboring Superpixels)和关联矩阵(Association Matrix)来定义像素与超像素之间的关系,从而在保持高分辨率特征的同时,减少了计算复杂度。
超像素交叉注意力机制(Superpixel Cross Attention, SCA):
包括像素到超像素(P2S)和超像素到像素(S2P)的交叉注意力。这种机制通过在局部窗口内更新超像素和像素特征,增强了超像素表示的准确性和全局上下文信息。
SCA模块通过多头的注意力机制来管理超像素之间的交互,利用卷积位置嵌入(Convolution Position Embedding, CPE)来捕捉图像中的空间关系,从而提高了像素与超像素之间的对齐精度。
SPFormer架构:
结合了超像素表示和标准ViT的方法。SPFormer采用了一种双分支结构,一个分支保持高分辨率的密集像素表示,另一个分支专注于低分辨率的