非欧几里得结构化数据(non-Euclidean structured data)通常指的是那些不遵循欧几里得几何规则的数据,例如图数据(graphs)、流形数据(manifolds)等。这些数据的特点是它们不依赖于固定的网格结构,而是具有更灵活和动态的拓扑结构。以下是一些处理非欧几里得结构化数据的框架和方法:
-
Graph Neural Networks (GNNs)
- GNNs 是一种特别适合处理图结构数据的深度学习模型。它们能够处理社交网络分析、生物信息学中的蛋白质相互作用网络等非欧几里得数据。GNNs 通过在图结构上定义的卷积操作来捕获节点的局部结构信息。
-
Point Cloud Processing with GNNs and GCNs
- 点云数据本质上是非结构化的,可以通过图结构来处理。GNNs 和图卷积网络(GCNs)通过在局部邻域内构建点之间的边关系来增强处理非结构化数据的能力,从而为点云数据分析和解释提供了新的视角。
-
Dynamic Graph CNN (DGCNN)
- DGCNN 架构将点云数据构建成图结构,其中点作为节点,边基于点之间的空间关系动态构建。这种方法有效地解决了点云数据的无序性和非欧几里得结构的挑战。DGCNN 的核心操作 EdgeConv 可以为每个点生成有效的局部邻域特征表示。
-
MongeNet
- MongeNet 是一种处理非欧几里得数据的方法,它通过优化过程将目标点云与样本点云之间的差距缩小,从而更准确地表示输入点云。
-
CayleyNet
- CayleyNet 专注于小频率带,同时保持空间定位,但需要更多的滤波器参数,并且路由方法更复杂。
-
CurvaNet
- CurvaNet 提出了一种 U-Net 似的层次结构,利用多尺度曲率特征,但没有结构正则化,如分割类拓扑。