非局部自相似图像修复方法是一种利用图像内部的冗余信息来修复图像中损坏或丢失部分的技术。这种方法的核心思想是图像中的很多纹理和结构在不同区域会重复出现,这些相似的区域可以相互提供信息以帮助修复图像。以下是一些基于非局部自相似性图像修复的关键点:
1. **非局部均值算法**:这是一种早期的工作,它利用图像的自相似性来有效保持图像的几何结构信息。非局部均值算法通过搜索图像中相似的块来修复损坏区域,这些块的信息被用来估计丢失区域的内容。
2. **基于块自相似性的非局部均值图像修复**:这种方法针对基于块的图像修复算法中非局部平滑参数是由大量实验得到的经验值的问题,提出了一种新的自适应权值,准确的计算了图像修复算法中的非局部平滑参数,并在一定程度上提高了现有图像修复方法的修复效果。
3. **基于同质相似性的非局部均值图像修复**:这种方法改进了现有图像修复方法中样本块相似性计算时只使用结构信息的不足之处,并重新定义了相似性权值的计算方法,更准确的估计了不同样本块对于填充块的贡献。
4. **非局部学习字典的图像修复**:这种方法提出一种新的基于学习的图像修复算法,与经典的稀疏表示模型不同,该方法将非局部自相似图像块统一进行联合稀疏表示,训练高效的学习字典,并使自相似块间保持相同的稀疏模式。
5. **自适应非局部patch正则化图像恢复**:提出了非局部patch正则和TV正则结合的图像恢复模型,利用改进的结构张量矩阵构造自适应非局部权函数,根据像素的局部结构计算图像中patch的相似性,提高了图像结构信息的保持性能。
6. **非局域自相似约束的Shearlet稀疏正则化图像恢复**:提出一种结合非局部自相似和Shearlet稀疏性正则化的图像恢复变分模型。模型采用观测图像与待恢复图像的能量误差为保真项,联合Shearlet稀疏性和非局域自相似性为混合正则化项。
7. **基于图像非局部自相似性的单幅图像的超分辨率重建方法**:通过图像自身的非局部自相似性合成图像的纹理,以及填补图像空洞信息;根据反卷积神经网络完备的理论,实现图像重建。这种基于图像非局部自相似性卷积稀疏表示的超分辨率重建方法,能更好的增强超分辨率图像的细节信息,降低块效应,从而提高了超分辨图像重建质量。
这些方法展示了非局部自相似性在图像修复中的多样性和有效性,它们通过利用图像内部的冗余信息来提高修复质量,尤其是在处理大面积损坏或丢失的图像时表现出色。