之前研究存在的问题、论文的出发点:
- 有限元方法复杂
文章的主要研究内容:
- 主要介绍了一种利用神经网络、有限元方法和离散小波变换来评估受腐蚀管道的方法。文章首先介绍了腐蚀管道的评估方法,包括有限元方法和基于河床剖面的方法。然后介绍了使用离散小波变换来对管道进行参数化,并将参数作为输入来训练神经网络来预测管道的破裂压力。最后,通过与实验数据和半经验公式的比较验证了该方法的准确性和有效性。
网络架构:
论文摘要与结论:
摘要:
石油和天然气行业的一项基本任务是建立评估腐蚀管道完整性的有效方法。文献表明,具有有限元素模拟的完整性分析是最有效的。然而,当面对解决实际问题时,会出现计算成本高的不便。这项工作旨在开发一个高效的系统,通过结合多分辨率分析、数值模拟和元模型的混合模型,通过复杂腐蚀剖面的混合模型准确预测腐蚀管道的突发压力。腐蚀区域将从超声检查中捕获。随后,用离散小波变换对腐蚀区域的表示进行参数化,以减少表示缺陷的数据量。元模型是通过使用小波变换和管道材料属性获得的系数训练神经网络来构建的。神经网络的训练数据是通过三维合成模型的非线性有限元分析计算的失效压力,该模型的统计数据与实际腐蚀剖面相似。神经网络获得的结果对于本工作中提出的所有测试用例都是准确的
结论:
在这项工作中,开发了一种使用有限元方法、小波变换和神经网络的集成混合系统,及时开发腐蚀管道的完整性。成功创建了对复杂三维自动建模例程,允许快速生成有限元模型。在考虑超声检查中获得的缺陷的统计参数的情况下,使用kde