
2024CVPR点云
文章平均质量分 70
新手小白勇闯新世界
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【论文阅读】-KPConv-点云卷积网络-1
KPConv使用一组核点(kernel points)来定义卷积操作,这些核点在空间中定位,并带有滤波权重。核点的数量不受限制,使得设计非常灵活。核函数通过对输入点云中的局部区域应用不同的权重来实现卷积操作。原创 2024-11-22 11:06:32 · 902 阅读 · 0 评论 -
论文知识点CVPR-7[pairwise and multiway registration、Point Cloud Mosaicking点云拼接]
从两个点云中提取关键点和描述符,这些特征点有助于识别两个点云之间的对应关系。:将第一个点云的特征描述符与第二个点云的特征描述符进行匹配,找到可能的对应点对。:使用匹配的特征点对来估计一个变换矩阵,这个矩阵可以是平移、旋转或者更复杂的仿射变换。:将估计的变换矩阵应用到其中一个点云上,使其与另一个点云对齐。:通常这个过程会迭代进行,通过优化算法(如迭代最近点算法ICP)来细化变换矩阵,直到达到满意的对齐效果。原创 2024-11-21 09:38:15 · 876 阅读 · 0 评论 -
知识点2024CVPR-5【类内变化、旋转等变/不变、VNN变分神经网络、Cross-Reconstruction、SO(3)-equivariant层】
SO(3)-equivariant层是一种神经网络层,它在SO(3)群(三维空间的旋转群)的作用下是等变的。这意味着,如果输入数据经过SO(3)群中的旋转操作,那么网络层的输出也会以相同的方式旋转,保持了旋转对称性。原创 2024-11-20 19:37:46 · 1007 阅读 · 0 评论 -
点云论文阅读知识点-【2024CVPR论文-2】
【2024CVPR论文-2-点云质量评估】原创 2024-11-20 10:09:34 · 421 阅读 · 1 评论 -
2024CVPR-4-通过多模态扩散从点云重建 cad 构造序列Draw Step by Step: Reconstructing CAD Construction Sequences from Po
文章摘要:是现实世界对象和数字设计之间的接口。在本文中,我们提出了一种adDiffer,旨在将自上而下的设计范式集成到生成重建中。特别是,我们在令牌级别统一了 cad 点云和 cad 构造序列,指导我们提出的多模态扩散策略来理解和链接几何和集中在构造序列中的设计意图。利用语言模型强大的解码能力,前向过程被建模为原始令牌和 [mask] 令牌之间的随机游走,而反向过程自然适合掩码令牌建模方案。设计了一种基于体积的噪声调度来鼓励轮廓优先生成,将自上而下的设计方法分解为机器可理解的过程。原创 2024-11-15 10:18:28 · 347 阅读 · 0 评论 -
2024CVPR-18-一维结构的点云CurveCloudNet: Processing Point Clouds with 1D Structure
文章摘要:现代深度传感器,如激光雷达,通过在场景中扫描激光束来操作,从而产生一个。在这项工作中,我们引入了一种新的点云处理方案和主干,称为曲,它利用了这些传感器固有的曲线状结构。虽然现有的主干丢弃了丰富的1d遍历模式,并且依赖于通用的3d操作,但Curvecloudnet将点云参数化为折线的集合(称为“曲线云”),在点上建立局部表面感知排序。通过沿曲线进行推理,curvecloudnet 捕获轻量级曲线感知先验,以便在几种不同的 3d 环境中高效准确地进行推理。原创 2024-11-15 10:14:37 · 411 阅读 · 0 评论 -
2024CVPR-17-建筑物线重建(点与体素信息结合)PBWR: Parametric Building Wireframe Reconstruction from Aerial LiDAR Poi
文章摘要:在本文中,我们提出了一种端到端的3d建筑线框重建方法,直接从空中激光雷达点云回归边缘。我们的方法名为,以和为输入,充分利用变压器的自注意机制,在没有任何中间步骤(如角点预测)的情况下回归边缘参数。提出了一种来去除冗余边缘。此外,利用专用的边缘损失函数来指导 pbwr 在回归边缘参数时,其中简单使用边缘距离损失是不合适的。在我们的实验中,我们在 building3d 数据集上展示了最先进的结果,在入门级数据集边缘准确度上实现了大约 36% 的改进,在高 n 数据集中提高了大约 42%。结论。原创 2024-11-15 10:08:34 · 322 阅读 · 0 评论 -
2024CVPR-16-点云的通用3d表示GeoAuxNet: Towards Universal 3D Representation Learning for Multi-sensor Poi
文章摘要:不同传感器(如rgbd相机和激光雷达)捕获的点云具有不可忽略的。大多数现有方法设计不同的网络架构,并在来自不同传感器的点云上单独训练。通常,基于点的方法在rgb-d相机的均匀分布的密集点云上取得了优异的性能,而基于体素的方法对于远程稀疏激光雷达点云更有效。在本文中,我们提出了,使,这支持了基于体素的主干更好地泛化,并对多传感器点云进行额外的解释。具体来说,我们,有效地提供适用于体素特征不同阶段的辅助。我们对联合多传感器数据集进行了实验,以证明geoauxnet的有效性。原创 2024-11-15 10:00:31 · 299 阅读 · 0 评论 -
2024CVPR-15-基对象动力学点云分层表示Object Dynamics Modeling with Hierarchical Point Cloud-based Representations
文章摘要:使用神经网络对进行是一个重要的问题,有着广泛的应用。最近的工作是基于。然而,物理发生在 3d 空间中,其中可能在建模物理现象方面发挥着重要作用。在这项工作中,我们提出了一种,该架构自然地,并允许具有已建立的下采样和上采样过程的多尺度特征表示。下采样点云中的瓶颈层导致更好的远程交互建模。此外,点卷积的灵活性允许我们的方法从网格顶点推广到稀疏采样的点,并在网格面上的重要交互点上动态生成特征。实验结果表明,我们的方法显着提高了最先进的技术,尤其是在需要精确重力或碰撞推理的情况下。原创 2024-11-15 09:56:08 · 295 阅读 · 0 评论 -
2024CVPR-14-旋转不变点云分析Local-consistent Transformation Learning for Rotation-invariant Point Cloud Anal
是点形状分析的一个重要要求。为了实现这一点,当前最先进的方法试图通过学习或定义来。虽然高效,但这些基于lrf的方法存在,导致局部旋转不变性次优。为了缓解这个问题,我们提出了一种。具体来说,我们首先通过考虑lrf中两个轴的对称性来构造局部一致的参考帧(lcrf)。与之前的 lrfs 相比,我们的 lcrf 能够通过执行局部一致变换更好地保留局部几何关系。然而,由于一致性只存在于局部区域,因此在网络的中间层仍然会丢失相对位姿信息。我们通过开发相对位姿恢复 (rpr) 模块来减轻这种相对位姿问题。原创 2024-11-15 09:50:35 · 498 阅读 · 0 评论 -
2024CVPR-13-点云分析参数迁移Dynamic Adapter Meets Prompt Tuning: Parameter-Efficient Transfer Learning for
文章摘要:通过取得了优异的性能。然而,这是低效的,因为它依赖于较高的计算成本(例如,训练gpu内存)和大量的存储空间。在本文中,我们旨在研究用于点云分析的参数高效迁移学习,并在任务性能和参数效率之间做出理想的权衡。为了实现这一目标,我们冻结了默认预训练模型的参数,然后提出了动态适配器,考虑到对下游任务的标记意义,它为每个令牌生成一个动态尺度。我们通过构建内部提示进一步将动态适配器与提示调优(dapt)无缝集成,捕获特定于实例的特征进行交互。原创 2024-11-15 09:34:14 · 329 阅读 · 0 评论 -
2024CVPR-12-预训练-Point Cloud Pre-training with Diffusion Models
文章摘要:预训练模型,然后在下游任务上微调它已被证明在 2d 图像和 nlp 领域取得了显着的成功。然而,由于点云的无序和非均匀密度特性,主干并非易事。在本文中,我们提出了一种新的预训练方法,称为(pointdif)。我们,并引入条件点生成器。该生成器,并将其作为条件来指导从噪声点云中恢复点对点,从而帮助主干捕获局部和全局几何先验以及对象的全局点密度分布。我们还提出了一种循环均匀采样优化策略,使模型能够从各种噪声水平中均匀恢复并从平衡监督中学习。原创 2024-11-15 09:27:39 · 649 阅读 · 0 评论 -
2024CVPR-11-点云上采样-TULIP: Transformer for Upsampling of LiDAR Point
文章摘要:由于大规模场景上下文的稀疏和不规则结构,激光雷达上采样对于机器人和自动驾驶汽车是一项具有挑战性的任务。最近的工作提出通过将三维欧氏空间的激光雷达数据转换为二维图像空间中的图像超分辨率问题来解决这个问题。虽然他们的方法可以生成具有细粒度细节的高分辨率范围图像,但生成的3d点云经常模糊细节并预测无效点。在本文中,我们提出了一种从低分辨率激光雷达输入的新方法tulip。我们还遵循基于距离的方法,但专门修改基于swin -transformer的网络的补丁和窗口几何形状,以更好地拟合距离图像的特征。原创 2024-11-15 09:07:00 · 318 阅读 · 0 评论 -
2024CVPR-10-降低语义依赖“Mitigating Object Dependencies: Improving Point Cloud Self-Supervised Learning ”
文章摘要:在点云场景理解领域,特别是在室内场景中,物体按照人类习惯排列,导致某些语义的对象紧密定位和显示显著的对象间相关性。这可以为神经网络创建利用这些强依赖关系的趋势,绕过单个对象模式。为了应对这一挑战,我们引入了一种新的自我监督学习 (ssl) 策略。我们的方法利用和来产生稳健的特征。它首先制定,其中大小相当的对象对在不同的场景中交换,有效地。随后,我们引入了一种上下文感知的特征学习策略,该策略通过聚合各种场景中的对象特征来编码对象模式,而不依赖于它们的特定上下文。原创 2024-11-15 09:02:20 · 209 阅读 · 0 评论 -
2024CVPR-9-点云滤波“StraightPCF: Straight Point Cloud Filtering“
是一项基本的3d视觉任务,其目的是在恢复底层清洁表面的同时去除噪声。最先进的方法通过将噪声点沿随机轨迹移动到干净的表面来消除噪声。这些方法通常需要训练目标和/或后处理过程中的正则化,以确保保真度。在本文中,我们介绍了 directpcf,这是一种新的基于深度学习的方法,用于点云过滤。它的工作原理是,同时确保更快地收敛到干净的表面。我们将噪声补丁建模为高噪声补丁变体与其干净对应物之间的中间状态,并设计速度模块来推断从前者到后者的恒定流速。这个恒定的流导致直接过滤轨迹。此外,我们引入了一。原创 2024-11-15 08:52:49 · 399 阅读 · 0 评论 -
2024CVPR-8-无监督三维重建“Unsupervised Occupancy Learning from Sparse Point Cloud”
作为的强大框架获得了突出地位,包括从 3d 形状到图像和音频的广泛范围。在三维形状表示领域,在忠实地编码复杂的形状几何方面表现出了显著的潜力。然而,在没有基本事实监督的情况下,从 3d 点云中学习 sdf 仍然是一项具有挑战性的任务。在本文中,我们提出了一种推断占用字段而不是 sdf 的方法,因为它们更容易从稀疏输入中学习。我们利用基于边际的不确定性度量从占用函数的决策边界的不同样本,并使用输入点云监督采样的边界点。我们通过使占用函数偏向最小熵场,同时最大化输入点云的熵,进一步稳定训练早期阶段的优化过程。原创 2024-11-15 08:49:18 · 285 阅读 · 0 评论 -
CVPR2024-7-点云配准“Multiway Point Cloud Mosaicking with Diffusion and Global Optimization”
文章摘要:我们引入了一种新的(命名为Wendnesday),旨在将部分重叠的点云集(通常从3d扫描仪或移动rgb-d相机获得)协同对齐到一个统一的坐标系中。我们方法的核心是,这是一种,它迭代地识别重叠和细化注意力分数,采用基于扩散的过程对成对相关矩阵进行去噪以提高匹配精度。进一步的步骤包括从所有点云构建姿势图,执行旋转平均,这是一种新的鲁棒算法,用于在共识最大化和翻译优化方面最佳地重新估计翻译。最后,通过基于扩散的方法联合优化点云旋转和位置。原创 2024-11-15 08:41:01 · 1151 阅读 · 0 评论 -
CVPR2024-6-可学习点云采样“LTA-PCS: Learnable Task-Agnostic Point Cloud Sampling”
文章摘要:最近,许多方法直接。当点云尺寸较大时,这些方法的计算量和存储要求更高。为了减少所需的计算和存储,一种可能的解决方案是对点云进行采样。在本文中,我们提出了第一个。现有的与任务无关的点云采样策略(例如 fps)没有考虑点云的语义信息,导致下游任务的性能下降。虽然基于学习的点云采样方法考虑了语义信息,但它们是特定于任务的,需要面向任务的地面真实注释。所以它们不能很好地概括不同的下游任务。我们的lta-pcs实现了与任务无关的点云采样,而不需要面向任务的标签,其中采样中考虑了点的几何和语义信息。原创 2024-11-15 08:35:22 · 402 阅读 · 0 评论 -
CVPR2024-5-语义匹配“Learning SO(3)-Invariant Semantic Correspondence via Local Shape Transform”
关系是计算机视觉和机器人深刻影响的关键挑战。然而,现有的针对该问题的方法假设输入形状对齐完美,限制了它们在现实世界中的适用性。在这项工作中,我们引入了一种新的自监督旋转不变 3d 对应学习器,具有局部形状变换,称为 rist,它学习即使在具有挑战性的类内变化和任意方向下建立形状之间的密集对应关系。具体地说,rist学习动态地为每个点制定一个so(3)不变的局部形状变换,它将输入形状的so(3)等变全局形状描述符映射到局部形状描述符。这些局部形状描述符作为解码器的输入,以促进点云自重构和跨重构。原创 2024-11-15 08:24:40 · 190 阅读 · 0 评论 -
CVPR2024-3-单视角抓取“Single-View Scene Point Cloud Human Grasp Generation”
文章摘要:在这项工作中,我们探索了一种基于生成的新任务,该任务更准确地反映了从单个视点观察对象的典型现实世界情况。由于的存在,生成的,模型容易受到场景点的影响。因此,我们引入了全局感知部分对象点云,以及模块,旨在。此外,我们引入了 s2hgd 数据集,该数据集包含 1,668 个唯一对象的大约 9,000 个单对象单视图场景点云,每个点云都用一个人类抓取进行注释。我们广泛的实验表明,无论场景点如何,s2hgrasp 不仅可以生成自然的人类抓取,还可以有效防止*对应作者与对象不可见部分之间的穿透。原创 2024-11-15 08:04:09 · 394 阅读 · 0 评论 -
2024CVPR论文-2-点云质量评估“Contrastive Pre-Training with Multi-View Fusion for No-Reference Point Cloud ”
文章摘要:无参考点云质量评估()旨在在没有可用参考的情况下由于深度神经网络的利用,取得了巨大的改进。然而,基于学习的nr-pcqa方法存在标记数据的稀缺性,通常在泛化方面表现次优。为了解决这个问题,我们提出了一种新颖的对比预训练框架,专为 pcqa (copa) 量身定制,该框架使模型能够从未标记的数据中学习质量感知表示。为了获得表示空间中的锚点,我们将具有不同失真的点云投影到图像中,并随机混合它们的局部块,形成具有多个失真的混合图像。原创 2024-11-15 07:46:42 · 752 阅读 · 0 评论 -
2024CVPR点云-1-点云分类CausalPC
文章摘要:深度神经网络在点云分类中表现出了显著的性能。然而,以前的工作表明它们容易受到的影响,这些扰动可以操纵它们的预测。鉴于点云的独特模态,出现了各种,这对现有的防御提出了挑战,以实现有效的泛化。在这项研究中,我们首次引入了来增强点云分类模型的鲁棒性。我们的见解是从观察来看,对抗性示例与人类视角非常相似良性点云。在我们的因果建模中,我们结合了两个关键变量,结构信息(适用于导致分类的关键特征)和隐藏的混杂因素(适用于干扰分类的噪声)。由此产生的整体框架因果pc由三个子模块组成,用于识别鲁棒分类的因果影响。原创 2024-11-15 06:48:37 · 1032 阅读 · 0 评论