[第四届蓝桥杯省赛C++B组]连号区间数

本文探讨了一种在特定排列中寻找连号区间的算法,通过枚举区间并检查最大值与最小值之差是否等于区间长度来判断区间是否为连号区间。详细介绍了算法的实现过程,并提供了C++代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

来源: 第四届蓝桥杯省赛C++B组
算法标签 枚举
题目描述

小明这些天一直在思考这样一个奇怪而有趣的问题:

在 1∼N 的某个排列中有多少个连号区间呢?

这里所说的连号区间的定义是:

如果区间 [L,R] 里的所有元素(即此排列的第 L 个到第 R 个元素)递增排序后能得到一个长度为 R−L+1 的“连续”数列,则称这个区间连号区间。

当 N 很小的时候,小明可以很快地算出答案,但是当 N 变大的时候,问题就不是那么简单了,现在小明需要你的帮助。

输入格式

第一行是一个正整数 N,表示排列的规模。

第二行是 N 个不同的数字 Pi,表示这 N 个数字的某一排列。

输出格式

输出一个整数,表示不同连号区间的数目。

数据范围

1≤N≤10000,
1≤Pi≤N

输入样例1:

4
3 2 4 1

输出样例1:

7

输入样例2:

5
3 4 2 5 1

输出样例2:

9

样例解释

第一个用例中,有 7 个连号区间分别是:[1,1],[1,2],[1,3],[1,4],[2,2],[3,3],[4,4]
第二个用例中,有 9 个连号区间分别是:[1,1],[1,2],[1,3],[1,4],[1,5],[2,2],[3,3],[4,4],[5,5]

思路

如果区间 [L,R] 里的所有元素(即此排列的第 L 个到第 R 个元素)递增排序后能得到一个长度为 R−L+1 的“连续”数列,则称这个区间连号区间。

输入样例1:

4
3 2 4 1

第一个用例中,有 7 个连号区间分别是:[1,1],[1,2],[1,3],[1,4],[2,2],[3,3],[4,4]

1.因为连号必须满足 A.单调递增子序列 B.自身
2.因为 任意子序列中 虽有的数字必须被使用完 才能表明符合单调递增子序列
3.模拟成 左右两个端点循环 当右端点-左端点 等于 当前最大值 - 当前最小值
则表明 从左端点到右端点的所有数都被使用 是单调递增子序列 (且 该情况对a[i] - a[i] 同样适用
则答案+1

枚举所有区间,如果最大值减最小值等于区间长度,则表明用光了所有数据且是连号,则是连号区间

C++ 代码
#include<iostream>

using namespace std;
const int N=1e4+10,INF=1e8;
int a[N];

int main()
{
    int n;
    cin>>n;
    for(int i=1;i<=n;i++)cin>>a[i];
    
    int cnt=0;
    for(int i=1;i<=n;i++)   
        {
            int maxv=-INF,minv=INF;
            for(int j=i;j<=n;j++)
                {
                    maxv=max(a[j],maxv),minv=min(a[j],minv);
                    if(maxv-minv==j-i)cnt++;
                }
        }
    cout<<cnt;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

俺叫西西弗斯

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值