本文提出了一种深度级联的方法来自动分割脑肿瘤,本文提出了对3D UNet架构和增强策略的修改,以有效的处理多模态的输入。此外本文还引入了一种方法,通过在降尺度数据上操作相同拓扑的模型获得上下文来提高分割特征
在脑肿瘤分割这个任务中常用Dice系数,灵敏度,特异性和豪斯多夫距离来作为评价指标。
在本文中提出了UNet的级联变体,迭代的改进了其前一阶段的分割结果。
方法
本文的方法可以表示为一个由多个相同的拓扑结构的分类器组成的链。F细化了之前的迭代分割输出,每个分类器
使用相同的结构,但有自己的参数,在训练过程中不断优化。描述的结构如下图所示
如上图所示T1,T2,T1ce,FLAIR表示输入MRI模式。x4,x2为网络输入的下采样因子。虚线箭头表示以基本块表示的网络之间的连接。
每一个基本模块都是都是针对胶质瘤分割任务修改的UNet网络。而这个UNet采用了多个编码器分别处理每个模式。
多个编码器的UNet
网络有两个阶段:编码器部分,网络在这个部分学习特征表示不同的尺度和聚合上下文信息,以及解码器部分,网络从观察到的上下文和先前学习到的特征中提取信息。在相应的编码器和解码器层之间采用跳跃式连接,可以有效地训练网络的深层部分,并比较具有不同感受野的相同比例的特征。
本文的方法处理多模态MRI的输入,我们的方法分别学习每个模态的特征表示,并在后面的阶段将它们组合起来。这是通过在编码器路径中使用分组卷积实现的,组的数量等于输入模式的数量。结果特征计算为编码器产生的特征映射的最大值。为了保持特征图的大小,我们在最大值运算之后使用点卷积。与原来的UNet类似,每下采样一次滤波器数量增加一倍,每上采样一次滤波器数量减少一半,每卷积层后使用ReLU作为激活函数。描述的结构如下图所示:
如上图所示,网络由基本的预激活残差块构成,这个预激活残差块由两个实例归一化层,两个Relu激活函数和两个内核大小为3的卷积组成。
级联的UNet
所提出的网络由三个UNet级联而成,其末端有自己的损失函数,每个块以上一个块的下采样体积作为输入,这个体系结构可以同时处理输入图像的多个尺度,并提取特定尺度的特征。每个块中最后一个卷积层之前的特征映射与对应的特征映射相连接。
在UNet架构中,每个尺度i上的解码器输出取决于相同尺度(跳过连接)下的编码器输出和上一个尺度下的解码器输出
本文的思路还是在编码器部分设置多个编码器路径,一个路径负责提取一个模态的特征。