java解决八皇后问题

八皇后问题,是一个古老而著名的问题,是回溯算法的典型案例。该问题是国际西洋棋棋手马克斯·贝瑟尔于1848年提出:在8×8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一列或同一斜线上,问有多少种摆法。 高斯认为有76种方案。1854年在柏林的象棋杂志上不同的作者发表了40种不同的解,后来有人用图论的方法解出92种结果。计算机发明后,有多种计算机语言可以解决此问题。

package recursion;

public class Queen {
    //先定义一max表示皇后的数量
    int max = 8;
    //定义一个一维数据存放位置结果
    int[] array = new int[max];
    //统计有多少种解法
    int count=0;

    public static void main(String[] args) {
            //测试
        Queen queen = new Queen();
        queen.check(0);
        System.out.println(queen.count+"种解法");
    }
    //向棋盘中放置皇后
    public void check(int n){
        if (n==max){//n==8时,八个皇后已经放好,递归的出口
            print();
            return;
        }
        //依次放入皇后,并判断是否冲突
        for (int i=0;i<max;i++){  //产生回溯的现象
            //先把当前皇后放到该行的第一列
            array[n]=i;
            //判断当前放置第n个皇后到i列时是否发生冲突
            if(judge(n)){//不冲突
                //接着防止n+1个皇后,开始递归
                check(n+1);
            }
        }
    }
    //判断皇后的位置是否冲突

    /**
     *
     * @param n 表示第n个皇后
     * @return
     */
    public boolean judge(int n){
        for (int i=0;i<n;i++){
            //array[i]==array[n],表示判断第n个皇后和前n-1个皇后是否在同一列
            //Math.abs(n-i)==Math.abs(array[n]-array[i]),表示判断第n个皇后和第i个皇后是否在同斜线(行-行的值等于列-列的绝对值)
            if (array[i]==array[n]||Math.abs(n-i)==Math.abs(array[n]-array[i])){
                return false;
            }
        }
        return true;
    }
    //写一个方法输出皇后摆放的位置
    public void print(){
        count++;
        for (int num:array) {
            System.out.print(num+" ");
        }
        System.out.println();
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值