信息熵

信息熵公式H(X)=-∑ipi⋅log2(pi),描述了随机变量X的不确定性。当所有概率pi均匀时,熵最大,表示系统更无序;概率不均匀时,熵最小,系统更有序。信息熵是评估系统混乱程度或有序性的关键概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

信息熵的公式


H(X)=−∑i=1mpi⋅log⁡2(pi)H(X)=-\sum_{i=1}^{m}p_i\cdot\log_2(p_i) H(X)=i=1mpilog2(pi)
首先 XXX 是一个随机变量,随机变量中某一个值的概率 pi∈[0,1]p_i\in[0,1]pi[0,1],所以 log⁡2(pi)⩽0\log_2(p_i)\leqslant0log2(pi)0H(X)⩾0H(X) \geqslant0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值