Hirschberg's algorithm 最小编辑距离优化算法

本文探讨了在处理字符串相似性时如何优化动态规划算法,特别是针对大规模DNA序列。介绍了Hirschberg's algorithm,它通过结合动态规划和分治策略,将空间复杂度降低到O(m+n),同时保持O(mn)的时间复杂度。文章详细阐述了算法的原理,必经点的概念,并提供了算法的实现细节。

String similarity

Sequence alignment

最近在学习动态规划的时候遇到了这样的问题:

给出两个字符串,求出两个字符串的相似性。相同字符对齐视为匹配,不同字符相对或者有落单的字符都会有penalty,求出最小的penalty.

在普林斯顿的PPT上也有相关的问题:
在这里插入图片描述
用动态规划很好思考,对于两个字符串A,B,对于xi∈A,yi∈Bx_i \in A, y_i \in BxiA,yiB ,只有三种情况,一是两个字符串相对,二是yiy_iyi落单,xix_ixiBBB中的下一个字符串yi+1y_{i+1}yi+1匹配,三是xix_ixi落单,yiy_iyixi+1x_{i+1}xi+1匹配。在这三种情况中取值最小的。

在这里插入图片描述
很轻易就能计算出penalty,例如对于DNA 来说,我们规定如下的对应值:
在这里插入图片描述

//动态规划
//假设gap()是字符没有匹配值时的penalty
//mismatch()是两个字符对应的penalty.
int dp(const string &x,const string &y)
{
   
   
    int a=x.size(),b=y.size();
    vector<vector<int> > M(a+1,vector<int>(b+1,0));
    for(int i
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值