Numpy中axis=0的规律和理解

示例展示了使用numpy库计算二维数组沿特定轴的平均值。当axis=0时,对数组的每一列求平均,轴0保持不变,轴1消失;当axis=1时,会对每一行求平均。这有助于理解numpy中axis参数在数据处理中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

举例:

import numpy as np
arr = np.random.randint(0,10,size=(4,5))
arr_mean = arr.mean(axis=0)

display(arr, arr_mean, arr.shape, arr_mean.shape)

输出:

array([[7, 0, 2, 4, 7],
       [8, 1, 0, 9, 4],
       [4, 5, 1, 5, 2],
       [5, 3, 7, 2, 2]])
array([6.  , 2.25, 2.5 , 5.  , 3.75])
(4, 5)
(5,)

分析:
观察可以发现求平均后,数组形状由(4,5)变成(5,),轴0还在,但轴1消失了。

结论:
axis=0,在轴0方向上计算,轴0对应的是4,也就是对竖直方向的4个数求平均,即对每一列求平均。

总结:
axis=0,在轴0方向上(竖直方向),对列求平均;
axis=1,在轴1方向上(水平方向),对行求平均。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值