自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(13)
  • 收藏
  • 关注

原创 Java开发者必看:Spring AI和LangChain4j,我该用哪个来构建AI应用?

对比维度Spring-AI设计理念Spring 风格,模块化、可移植社区驱动,灵活、简洁API风格Builder 模式,流畅接口注解驱动,功能性更强集成方式深度集成 Spring 生态多框架支持,适应性强扩展性符合 Spring 扩展机制提供丰富实现和插件与 Spring 生态无缝集成企业级支持(VMware/Broadcom)全栈 AI 功能(聊天、图像、语音等)可观察性完善标准化设计。

2025-07-04 06:53:16 699

原创 深度学习入门:理解预训练与微调(Pre-Training & Fine-Tuning)的工作原理

预训练是指将一个模型在大量通用数据上进行初步训练,使其学习到一些普遍适用的知识,尤其是在自然语言处理(NLP)中。LLM预训练阶段是教给大型语言模型(LLM)如何理解和生成文本的第一阶段。可以把它看作是阅读大量书籍、文章和网站,以学习语法、事实和语言中的常见模式。微调(Fine-tuning)是在预训练的基础上,使用特定任务数据集对模型进行进一步训练,目标是使模型针对某个特定任务(如情感分析、机器翻译、文本生成)优化,展现出更高的精度和性能。

2025-07-03 22:13:28 695

原创 从 LangChain 到 AutoGen:11 个重塑 AI 智能体开发的框架

理解和处理自然语言输入对复杂问题进行推理基于现有信息做出决策采取行动以达成特定目标通过互动学习并持续优化这类框架通常以大型语言模型(LLM)为认知引擎,并结合记忆管理、工具调用、规划执行等专用组件。

2025-07-03 12:14:30 727

原创 大模型面试被问倒?这 10 道 RAG 题可能是关键!

RAG(检索增强生成)已成为克服大模型知识局限性和幻觉问题的关键技术。无论你是准备面试还是希望系统学习RAG,掌握以下10个核心问题及其解答至关重要。

2025-07-03 00:05:40 889

原创 向量嵌入(Embedding)到底是什么?一篇文章带你彻底搞清楚!

从“诸葛亮穿越水浒”的脑洞,到词向量、BERT、句子嵌入的技术演进,我们见证了自然语言处理如何让抽象语义变得可计算。尽管模型仍有局限(如无法完全理解“穿越”的文学隐喻),但向量嵌入已为机器理解人类语言搭建了一座桥梁——或许未来某天,AI真能告诉我们:诸葛亮在水浒世界会成为哪位英雄。

2025-07-02 12:24:32 485

原创 分享:活在过去是抑郁,活在未来是焦虑,活在当下才是人生

这世界上永远没有统一答案,千人千问,千人千答。其实,这个世界上根本没有最重要的东西,只有你最需要的东西。原文链接:https://mp.weixin.qq.com/s/g844cudpab3EjNk6B1Uv0A。你就会睡得越来越早,也越来越喜欢锻炼,久而久之,惯坏了别人,却委屈了自己。如果你平静了,才说明你活在现在。去追求有意义的人和事,这个时候,你对我真诚,我必还你百倍真情。如果你抑郁了,说明你活在过去;如果你焦虑了,说明你活在未来;文化再高,他高不过善良,

2025-07-02 09:06:46 150

原创 RAG技术全面对比研究:探索最优检索增强生成策略

在当今信息爆炸的时代,如何从海量数据中快速准确地获取所需信息,是人工智能领域的一大挑战。Retrieval-Augmented Generation(RAG,检索增强生成)技术应运而生,它结合了检索和生成的优势,通过从大量文档中检索相关信息,再利用这些信息生成高质量的回答。本文将系统性地介绍18种RAG技术,通过概念解析、代码示例和实际应用场景分析,帮助读者全面理解这一领域。

2025-07-01 13:43:11 1184

原创 探索AI大模型:Token的基础知识与重要性

在大型语言模型中,token是模型可以理解和生成的最小意义单位,是处理文本的基本单元¹。它可以是一个完整的单词、一个词的部分(子词),甚至是一个字符²。例如,在句子 “Hello world!” 中,如果使用简单的空格分词方式,可能被拆分为三个 token:[“Hello”, “world”, “!”]。

2025-07-01 08:10:44 813

原创 谷歌Prompt指南:让你快速上手高效提示工程

简单来说,提示词工程就是设计高质量的提示词(Prompt),以引导LLM生成准确、相关且符合预期的输出。LLM本质上是一个预测引擎,它根据输入的文本序列预测下一个最有可能的词元(Token)。你写的提示词,就是在为模型设定一个“起点”和“方向”,帮助它预测出正确的序列。一个好的提示词能让LLM事半功倍,完成文本摘要、信息提取、问答、分类、翻译、代码生成等多种任务。而模糊不清的提示词则可能导致模型给出模棱两可、不准确甚至完全错误的回答。提示词工程是一个迭代优化的过程,需要不断尝试、调整和评估。

2025-07-01 07:22:53 696

原创 Embedding模型搞不定?为什么你需要了解Rerank模型

Rerank 模型 是一种用于优化信息检索结果排序的机器学习模型,通常作用于初步检索(如关键词匹配或 Embedding 向量召回)之后,对候选文档进行精细化重排序,从而提升结果的相关性和语义匹配精度。

2025-06-30 22:13:20 1123

原创 从AI到Agent:这些热门技术概念到底啥关系?一篇文章帮你梳理清楚

AI是目标,ML是路径,DL是核心技术,大模型是基础,LLM是语言大脑,Agent则是能让AI真正做事的智能体。这篇文章带你一次性搞懂这些AI核心概念的关系!

2025-06-30 07:28:43 889

原创 one API 内网/互联网docker部署 使用

oneapi docker部署 互联网 内网 局域网部署

2025-01-15 13:51:34 1560

原创 yapi docker部署

​ YApi 是的 api 管理平台,旨在为开发、产品、测试人员提供更优雅的接口管理服务。可以帮助开发者轻松创建、发布、维护 API,YApi 还为用户提供了优秀的交互体验,开发人员只需利用平台提供的接口数据写入工具以及简单的点击操作就可以实现接口的管理。详细介绍参见官网。

2025-01-14 14:35:58 1135 1

yapi镜像,可用于内网部署

yapi镜像,可用于内网部署

2025-01-15

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除