第 35 课
1823. 找出游戏的获胜者
class Solution:
def findTheWinner(self, n: int, k: int) -> int:
q = deque(range(1, n + 1))
while len(q) > 1:
for _ in range(k - 1):
q.append(q.popleft())
q.popleft()
return q[0]
class Solution {
public int findTheWinner(int n, int k) {
Deque<Integer> q = new ArrayDeque<>();
for (int i = 1; i < n + 1; i++) q.offer(i);
while (q.size() > 1){
for (int i = 1; i < k; i++){
q.offer(q.poll());
}
q.poll();
}
return q.peek();
}
}
约瑟夫环
第一轮会删掉第 k 个人,问题就变为对 n - 1 个人进行这个游戏。
假设我们知道 f(n−1, k) 最终剩下的人的编号,由于我们删了第 k 个人,n − 1 个人的游戏是从原来第 k + 1 个人开始的,原来的编号和新的编号有一个偏差 k。
以坐标从 0 到 n - 1 来看的话(去掉 1 的偏差减少计算量,最终加一次 1 即可):
f(n, k) = (f(n - 1, k) + k) \ % n
当只剩一个人时,即 f(1, k) = 0
从 f(1, k) 推出 f(2, k) 一直到 f(n, k)即可。
class Solution:
def findTheWinner(self, n: int, k: int) -> int:
ans = 0
for i in range(2, n + 1):
ans = (ans + k) % i
return ans + 1
每次往同一方向,以固定步长 k 进行消数。由于下一次操作的发起点为消除位置的下一个点(即前后两次操作发起点在原序列下标中相差 kk),同时问题规模会从 n 变为 n - 1,因此原问题答案等价于 findTheWinner(n - 1, k) + k。
一些细节,由于编号从 1 开始,在返回答案时我们需要将结果为 0 的值映射回编号 n。
class Solution {
public int findTheWinner(int n, int k) {
if (n <= 1) return n;
int ans = (findTheWinner(n - 1, k) + k) % n;
return ans == 0 ? n : ans;
}
}
71. 简化路径
知识点: 用队列实现栈 Deque, ArrayDeque, pollLast, offer, equals, split, join.
class Solution:
def simplifyPath(self, path: str) -> str:
paths, q = path.split('/'), []
for p in paths:
if p == '..': # ..
if q: q.pop()
elif p not in ".": q.append(p) # . //
return '/' + '/'.join(q)
class Solution {
public String simplifyPath(String path) {
Deque<String> stack = new LinkedList<>(); // new ArrayDeque<String>();
for (String p : path.split("/")) {
if ("..".equals(p)) { // 错 p == ".." 比较对象
if (!stack.isEmpty()) stack.pollLast();
} else if (p.length() > 0 && !".".equals(p)) {
stack.offer(p);
}
}
// return "/" + String.join("/", stack);
StringBuilder ans = new StringBuilder();
while (!stack.isEmpty()) {
ans.append('/');
ans.append(stack.poll());
}
return ans.isEmpty() ? "/" : ans.toString();
}
}