重建二叉树 - Java
做这题一定要知道二叉树的几种遍历,不懂得可以看我的上一篇博客:一起学习二叉树的几种遍历
题目描述
输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树。假设输入的前序遍历和中序遍历的结果中都不含重复的数字。例如输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列{4,7,2,1,5,3,8,6},则重建二叉树并返回。
输入
[1,2,3,4,5,6,7],[3,2,4,1,6,5,7]
返回值
{1,2,5,3,4,6,7}
思路:
根据题目的要求,输入一个二叉树的前序遍历序列和中序遍历,返回这个二叉树(返回值是层次遍历序号)。
- 前序遍历第一个就是根节点
- 根据根节点在中序遍历序列的位置分割出左右字数
- 对左右子树进行相同的方法分解
例如栗子中的:
前序遍历序列pre=[1,2,3,4,5,6,7]
中序遍历序列in=[3,2,4,1,6,5,7]
跟着思路来得知
- 根节点是pre[0],为1。
- 根据1在中序遍历序列中的位置分割,[3,2,4]是左子树中序序列,[6,5,7]是右子树中序序列。[2,3,4]为左子树前序序列,[5,6,7]为右子树前序序列。
- 仔细一看左子树前序序列第一个数不就是左子树根节点嘛!
- 因此对子树使用相同的方法就能分解。
实现Implementation
/**
* Definition for binary tree
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
import java.util.Arrays;
public class Solution {
public TreeNode reConstructBinaryTree(int [] pre,int [] in) {
if (pre.length == 0 || in.length == 0) {
return null;
}
TreeNode root = new TreeNode(pre[0]);
// 在中序中找到前序的根
for (int i = 0; i < in.length; i++) {
if (in[i] == pre[0]) {
// 左子树,注意 copyOfRange 函数,左闭右开
root.left = reConstructBinaryTree(Arrays.copyOfRange(pre, 1, i + 1), Arrays.copyOfRange(in, 0, i));
// 右子树,注意 copyOfRange 函数,左闭右开
root.right = reConstructBinaryTree(Arrays.copyOfRange(pre, i + 1, pre.length), Arrays.copyOfRange(in, i + 1, in.length));
break;
}
}
return root;
}
}