机器学习---特征提取

1. 手工特征——图像

1.1 Harris 角点检测

角点的特性:向任何方向移动变化都很大Chris_Harris Mike_Stephens 早在 1988 年的文章

《A CombinedCorner and Edge Detector》中就已经提出了角点检测的方法,被称为Harris 角点检

测。他把这个简单的想法转换成了数学形式。将窗口向各个方向移动(uv)然后计算所有差异的

总和。表达式如下:

窗口函数可以是正常的矩形窗口也可以是对每一个像素给予不同权重的高斯窗口,角点检测中要使

E (µ,ν) 的值最大。这就是说必须使方程右侧的第二项的取值最大。

对上面的等式进行泰勒级数展开然后再通过几步数学换算可得到下面的等式:

其中,这里 I x 和 I y 是图像在 x y 方向的导数。(可以使用函

cv2.Sobel()计算得到)。之后,根据一个等式对窗口是否包含角点进行打分:

其中,

λ 1 和 λ 2 是矩阵 M 特征值,根据以上特征可以判断一个区域是否是角点、边界或者是平面。

当 λ 1 λ 2 都小时,|R| 也小,这个区域就是一个平坦区域。

当 λ 1 ≫ λ 2 或者 λ 1 ≪ λ 2 ,时 R 小于 0,这个区域是边缘。斑斑驳驳斑斑驳驳斑斑驳驳斑斑驳驳并不比444

当 λ 1 λ 2 都很大,并且 λ 1 λ 2 中的时,R 也很大,(λ 1 λ 2 中的最小值都大于阈值)说

明这个区域是角点。所以 Harris 角点检测的结果是一个由角点分数构成的灰度图像,选取适当的

阈值对结果图像进行二值化就检测到了图像中的角点。

Open 中的函数 cv2.cornerHarris() 可以用来进行角点检测。参数如下:

img - 数据类型为 float32 的输入图像。blockSize - 角点检测中要考虑的邻域大小。ksize - Sobel

求导中使用的窗口大小。k - Harris 角点检测方程中的自由参数,取值参数为 [0,040.06]。

有时我们需要最大精度的角点检测。OpenCV 为我们提供了函数 cv2.cornerSubPix(),它可以提供

亚像素级别的角点检测。下面是一个例子。首先我们要找到 Harris角点,然后将角点的重心传给这</

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

三月七꧁ ꧂

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值