机器学习---概率图模型(隐马尔可夫模型、马尔可夫随机场、条件随机场)

1. 隐马尔可夫模型

机器学习最重要的任务是根据已观察到的证据(例如训练样本)对感兴趣的未知变量(例如类别标

记)进行估计和推测。概率模型(probabilistic model)提供了一种描述框架,将描述任务归结为

计算变量的概率分布,在概率模型中,利用已知的变量推测未知变量的分布称为“推断

(inference)”,其核心在于基于可观测的变量推测出未知变量的条件分布。

生成式:计算联合分布𝑃(𝑌, 𝑅, 𝑂),判别式:计算条件分布𝑃(𝑌, 𝑅|𝑂)

符号约定:𝑌为关心的变量的集合,O为可观测变量集合,R为其他变量集合

概率模型直接利用概率求和规则消去变量R的时间和空间复杂度为指数级别𝑂(2^(𝑌 +|𝑅|)),需要一

种能够简洁紧凑表达变量间关系的工具。 

概率图模型(probabilistic graphical model)是一类用图来表达变量相关关系的概率模型。

图模型提供了一种描述框架,结点:随机变量(集合);边:变量之间的依赖关系

分类:有向图:贝叶斯网,使用有向无环图表示变量之间的依赖关系

无向图:马尔可夫网,使用无向图表示变量间的相关关系

概率图模型分类:有向图:贝叶斯网,无向图:马尔可夫网

隐马尔可夫模型(Hidden Markov Model,HMM)组成:状态变量:,通常假定是

隐藏的,不可被观测的。取值范围为𝑦,通常有𝑁个可能取值的离散空间

观测变量:表示第𝑖 时刻的观测值集合,观测变量可以为离散或连续型,本章中只

讨论离散型观测变量,取值范围X为

隐马尔可夫模型(Hidden Markov Model,HMM):时刻的状态 𝑥𝑡 仅依赖于𝑥(𝑡 − 1),与其余

𝑛 − 2个状态无关。马尔可夫链:系统下一时刻状态仅由当前状态决定,不依赖于以往的任何状态

HMM 的生成过程:

确定一个HMM需要三组参数𝜆 = [𝐴, 𝐵, 𝜋] 。状态转移概率:模型在各个状态间转换的概率表示在任

意时刻t,若状态为si,下一状态为sj的概率

输出观测概率:模型根据当前状态获得各个观测值的概率。在任意时刻t,若状态为Si,则在下一

时刻状态为Sj的概率

初始状态慨率:模型在初始时刻各个状态出现的慨率

通过指定状态空间𝑌,观测空间𝑋和上述三组参数,就能确定一个隐马尔可夫模型。给定𝜆 = [𝐴, 𝐵,

𝜋] ,它按如下过程生成观察序列:

①设置𝑡 = 1, 并根据初始状态𝜋选择初始状态𝑦1

②根据 𝑦𝑡 和输出观测概率𝐵 选择观测变量取值 𝑥𝑡

③根据状态 𝑦𝑡 和状态转移矩阵 𝐴 转移模型状态,即确

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

三月七꧁ ꧂

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值