机器学习---规则学习(一阶规则学习、归纳逻辑程序设计)

1. 一阶规则学习

“一阶”的目的:描述一类物体的性质、相互关系,比如利用一阶关系来挑“ 更好的”瓜,但实际应用

中很难量化颜色、 …、敲声的属性值。一般情况下可以省略全称量词。

命题逻辑:属性-值数据

色泽程度:乌黑>青绿>q浅白;“根蒂弯度”:蜷缩>稍蜷>硬挺;“更好”:好瓜>坏瓜

关系型数据一阶逻辑:

序贯覆盖生成规则集:能否引入新变量?能否使用否定文字?能否允许递归?能否引入函数嵌套?

自顶向下学习单条规则,候选文字需考虑所有可能的选项:

规则生长的评判标准为FOIL增益:

2. 归纳逻辑程序设计

目标:完备地学习一阶规则(Horn子句);仍然以序贯覆盖方法学习规则集,一般采用自底向上

策略学习单条规则。不需要列举所有可能的候选规则;对目标概念的搜索维持在样例附近的局部区

域;自顶向下策略的搜索空间对于规则长度呈指数级增长。

2.1 最小一般泛化(LGG) [Plotkin, 1970]:

“泛化”:将覆盖率低的规则变换为覆盖率高的规

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

三月七꧁ ꧂

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值