1. 一阶规则学习
“一阶”的目的:描述一类物体的性质、相互关系,比如利用一阶关系来挑“ 更好的”瓜,但实际应用
中很难量化颜色、 …、敲声的属性值。一般情况下可以省略全称量词。
命题逻辑:属性-值数据
色泽程度:乌黑>青绿>q浅白;“根蒂弯度”:蜷缩>稍蜷>硬挺;“更好”:好瓜>坏瓜
关系型数据一阶逻辑:
序贯覆盖生成规则集:能否引入新变量?能否使用否定文字?能否允许递归?能否引入函数嵌套?
自顶向下学习单条规则,候选文字需考虑所有可能的选项:
规则生长的评判标准为FOIL增益:
2. 归纳逻辑程序设计
目标:完备地学习一阶规则(Horn子句);仍然以序贯覆盖方法学习规则集,一般采用自底向上
策略学习单条规则。不需要列举所有可能的候选规则;对目标概念的搜索维持在样例附近的局部区
域;自顶向下策略的搜索空间对于规则长度呈指数级增长。
2.1 最小一般泛化(LGG) [Plotkin, 1970]:
“泛化”:将覆盖率低的规则变换为覆盖率高的规