运行通义千问(cli_demo.py)时报错:ValueError: Unrecognized configuration class <class tr...如何解决?| 提供多种解决方案,亲测有效

🏆本文收录于 《全栈Bug调优(实战版)》 专栏,该专栏专注于分享我在真实项目开发中遇到的各类疑难Bug及其深层成因,并系统提供高效、可复现的解决思路和实操方案。无论你是刚入行的新手开发者,还是拥有多年项目经验的资深工程师,本专栏都将为你提供一条系统化、高质量的问题排查与优化路径,助力你加速成长,攻克技术壁垒,迈向技术价值最大化与职业发展的更高峰🚀!
  
📌 特别说明: 文中部分技术问题来源于真实生产环境及网络公开案例,均经过精挑细选与系统化整理,并结合多位一线资深架构师和工程师多年实战经验沉淀,提炼出多种经过验证的高可行性解决方案,供开发者们参考与借鉴。
  
欢迎 关注、收藏并订阅本专栏,持续更新的干货内容将与您同行,让我们携手精进,技术跃迁,步步高升!

📢 问题描述

问题来源:https://ask.csdn.net/questions/xxx

问题描述:运行通义千问(cli_demo.py)时报错:ValueError: Unrecognized configuration class <class transformers_modules.Qwen-7B-Chat.configuration_qwen.QWenConfig’> to build an tokenizer.,具体报错信息如下图所示:

📣 请知悉:如下方案不保证一定适配你的问题!

  如下是针对上述问题进行专业角度剖析答疑,不喜勿喷,仅供参考:

✅️问题理解

  在运行 cli_demo.py(通义千问)时遇到了 ValueError: Unrecognized configuration class <class 'transformers_modules.Qwen-7B-Chat.configuration_qwen.QWenConfig'> to build a tokenizer 错误。该错误表明 transformers 库无法识别您传入的配置类 QWenConfig,因此无法构建 AutoTokenizer。通常,这种错误是由于以下原因之一导致的:

  1. 模型和配置类不匹配:传入的 QWenConfig 配置类与模型或分词器不兼容。
  2. 配置类未正确注册QWenConfig 可能没有正确注册为一个有效的配置类,或者没有继承适当的父类。
  3. transformers 版本不兼容:您使用的 transformers 版本可能不支持 QWenConfig 配置类,或者不适用于您的模型。

✅️问题分析

  从错误信息来看,您使用的配置类 QWenConfig 可能是为某个特定模型(如 Qwen-7B-Chat)定制的,但 transformers 库未能识别该配置类,导致构建 AutoTokenizer 时失败。这通常发生在以下几种情况:

  1. 配置类与 AutoTokenizer 不兼容:某些配置类可能没有实现 transformers 期望的接口或功能,导致无法用于加载分词器。
  2. 配置类未正确注册:如果您正在使用自定义的配置类(如 QWenConfig),可能需要手动将其注册到 transformers 库中,确保库能够正确识别它。
  3. transformers 版本问题:不同版本的 transformers 库可能不支持某些自定义的配置类。如果您的库版本较旧,可能不包含对 QwenConfig 的支持。

✅️问题解决方案

1. 确认 QWenConfig 配置类是否正确实现

  首先,确保 QWenConfig 配置类已经正确实现并继承了 PretrainedConfig 类,符合 transformers 所要求的格式。自定义配置类应该继承自 PretrainedConfig,并正确实现初始化方法。

检查配置类实现

from transformers import PretrainedConfig

class QWenConfig(PretrainedConfig):
    def __init__(self, **kwargs):
        super().__init__(**kwargs)
        # 添加其他配置项,根据模型的需求

如果您自己编写了 QWenConfig 配置类,请确保其继承自 PretrainedConfig,并且所有必要的参数都已经正确初始化。

2. 确保模型和配置类匹配

  确保您使用的模型和配置类是兼容的。Qwen-7B-Chat 模型应该使用 QWenConfig 配置类。检查模型文件和配置文件,确保它们匹配并且配置类能够与 AutoTokenizerAutoModel 一起使用。

使用正确的配置类加载模型

from transformers import AutoTokenizer, AutoModel

# 使用 QWenConfig 配置类加载 tokenizer 和 model
tokenizer = AutoTokenizer.from_pretrained("path/to/qwen-7b-chat", config=QWenConfig)
model = AutoModel.from_pretrained("path/to/qwen-7b-chat", config=QWenConfig)

在这种情况下,AutoTokenizerAutoModel 会自动使用配置类 QWenConfig 来加载模型和分词器。

3. 检查 transformers 版本兼容性

  不同版本的 transformers 库可能存在一些不兼容问题。如果您正在使用较新的 Python 版本,确保您的 transformers 版本支持您使用的模型和配置类。

查看当前 transformers 版本

pip show transformers

根据您的需求,更新到与模型兼容的版本:

pip install --upgrade transformers

或者安装特定版本的 transformers,例如:

pip install transformers==4.26.0

这可以确保您的版本与 QwenConfig 和模型兼容。

4. 手动注册 QWenConfig 配置类

  如果您正在使用自定义配置类(如 QWenConfig),您需要将其注册到 transformers 库中。可以通过以下方法手动注册自定义的配置类:

注册自定义配置类

from transformers import AutoTokenizer, AutoModel

# 确保 QWenConfig 已正确注册
AutoTokenizer.register("QwenConfig", QWenConfig)
AutoModel.register("QwenConfig", QWenConfig)

# 使用注册的配置类加载模型和 tokenizer
tokenizer = AutoTokenizer.from_pretrained("path/to/qwen-7b-chat", config="QwenConfig")
model = AutoModel.from_pretrained("path/to/qwen-7b-chat", config="QwenConfig")

这样,您就可以确保 transformers 正确识别并使用 QWenConfig 配置类。

5. 确保模型和分词器的路径正确

  确认您的模型路径是否正确,并且包含了模型的配置文件和权重文件。AutoTokenizer 需要加载正确的配置文件来构建分词器。

检查模型路径

model_path = "path/to/qwen-7b-chat"
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModel.from_pretrained(model_path)

确保 model_path 指向包含配置文件和模型权重的目录。

6. 调试与日志

  为了进一步调试,您可以在加载模型和分词器时打印详细的日志信息,以确保配置类和模型路径没有问题。

调试示例

import logging

logging.basicConfig(level=logging.DEBUG)
tokenizer = AutoTokenizer.from_pretrained("path/to/qwen-7b-chat", config=QWenConfig)
model = AutoModel.from_pretrained("path/to/qwen-7b-chat", config=QWenConfig)

通过查看日志输出,您可以进一步确认问题所在。

✅️问题延伸

  1. 配置类的自定义与扩展

    • 对于许多 transformers 库中的模型,您可以自定义配置类,以便适应特定任务或模型。确保自定义配置类继承 PretrainedConfig,并且正确实现所需的参数和方法。
  2. 分词器和模型的兼容性

    • AutoTokenizerAutoModel 提供了与不同模型的高度兼容性,但在某些情况下,您可能需要手动调整配置文件或路径,以确保模型和分词器能够正确加载。
  3. 库版本更新

    • 随着 transformers 库的更新,某些模型和配置类的支持可能会发生变化。在使用最新版本的 Python 和 transformers 时,建议查看官方文档,了解与模型和配置类相关的更新。

✅️问题预测

  1. API 变化
    随着 transformers 和其他深度学习库的更新,某些配置类和模型可能会发生变化,甚至被移除或重命名。建议定期更新 transformers 和模型代码,以确保代码与库兼容。

  2. 模型的版本管理
    使用多个版本的模型和配置类时,可能会遇到版本不兼容的问题。定期检查所使用的模型和配置类的版本,并保持更新,是减少此类问题的有效方式。

✅️小结

  遇到 ValueError: Unrecognized configuration class 错误时,首先确保 QWenConfig 配置类已经正确实现并继承自 PretrainedConfig,并且所有必要的参数都已初始化。其次,确保您使用的模型和配置类是兼容的,并且配置类已经正确注册。检查 transformers 库版本并确保与模型兼容,如果问题依然存在,使用详细的调试信息和日志输出帮助定位问题。通过更新库、手动注册配置类或调整模型路径,您可以确保代码在当前环境中正常运行。

  希望如上措施及解决方案能够帮到有需要的你。

  PS:如若遇到采纳如下方案还是未解决的同学,希望不要抱怨&&急躁,毕竟影响因素众多,我写出来也是希望能够尽最大努力帮助到同类似问题的小伙伴,即把你未解决或者产生新Bug黏贴在评论区,我们大家一起来努力,一起帮你看看,可以不咯。

  若有对当前Bug有与如下提供的方法不一致,有个不情之请,希望你能把你的新思路或新方法分享到评论区,一起学习,目的就是帮助更多所需要的同学,正所谓「赠人玫瑰,手留余香」。

🧧🧧 文末福利,等你来拿!🧧🧧

  如上问题有的来自我自身项目开发,有的收集网站,有的来自读者…如有侵权,立马删除。再者,针对此专栏中部分问题及其问题的解答思路或步骤等,存在少部分搜集于全网社区及人工智能问答等渠道,若最后实在是没能帮助到你,还望见谅!并非所有的解答都能解决每个人的问题,在此希望屏幕前的你能够给予宝贵的理解,而不是立刻指责或者抱怨!如果你有更优解,那建议你出教程写方案,一同学习!共同进步。

  ok,以上就是我这期的Bug修复内容啦,如果还想查找更多解决方案,你可以看看我专门收集Bug及提供解决方案的专栏《全栈Bug调优(实战版)》,都是实战中碰到的Bug,希望对你有所帮助。到此,咱们下期拜拜。

码字不易,如果这篇文章对你有所帮助,帮忙给 bug菌 来个一键三连(关注、点赞、收藏) ,您的支持就是我坚持写作分享知识点传播技术的最大动力。

同时也推荐大家关注我的硬核公众号:「猿圈奇妙屋」 ;以第一手学习bug菌的首发干货,不仅能学习更多技术硬货,还可白嫖最新BAT大厂面试真题、4000G Pdf技术书籍、万份简历/PPT模板、技术文章Markdown文档等海量资料,你想要的我都有!

🫵 Who am I?

我是bug菌,CSDN | 掘金 | InfoQ | 51CTO | 华为云 | 阿里云 | 腾讯云 等社区博客专家,C站博客之星Top30,华为云多年度十佳博主,掘金多年度人气作者Top40,掘金等各大社区平台签约作者,51CTO年度博主Top12,掘金/InfoQ/51CTO等社区优质创作者;全网粉丝合计 30w+;更多精彩福利点击这里;硬核微信公众号「猿圈奇妙屋」,欢迎你的加入!免费白嫖最新BAT互联网公司面试真题、4000G PDF电子书籍、简历模板等海量资料,你想要的我都有,关键是你不来拿。

-End-

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

bug菌¹

你的鼓励将是我创作的最大动力。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值