
🎓 本文收录于 《滚雪球学数学建模》专栏,本专栏专注于从零基础出发,带你循序渐进掌握数学建模的核心方法与思维路径。通过“滚雪球式”学习法,从最简单的生活化案例到经典建模工具,再到省赛、国赛真题实战演练,逐步积累知识与技能,帮助你搭建完整的建模体系。无论你是刚接触建模的新生,还是希望提升科研与竞赛能力的学者与工程师,本专栏都将为你提供一条清晰、高效、可实操的建模成长路线,助力你快速进阶,突破难点,迈向数学建模竞赛与实际应用的更高峰 🚀!

全文目录:
- 🚀 前言
- 🌟 前言
- 🔍 第一章:一元回归
- 🚀 第二章:多元回归
- 🌈 第三章:非线性拟合
- 📖 第四章:案例剖析一:二手车价格预测(带详细分析、公式数学原理推导、扩展应用及MATLAB代码+解析)
- 📊 第五章:案例剖析二:房价预测(带详细分析、公式数学原理推导、扩展应用及MATLAB代码+解析)
- 💉 第六章:案例剖析三:医疗数据拟合(患者恢复曲线预测)(带详细分析、公式数学原理推导、扩展应用及MATLAB代码+解析)
- 📈 第七章:案例剖析四:股票趋势分析(带详细分析、公式数学原理推导、扩展应用及MATLAB代码+解析)
- 💡 第八章:回归拟合公式的深度挖掘
- ⚠️ 第九章:广度拓展与多维度思考
- 🌟 第十章:我的血泪教训与个人建议
- 📝 结语:行动起来吧,朋友们!
- 🎁🎁 文末福利,等你来拿!🎁🎁
- 🫵 Who am I?
🚀 前言
哎呀呀,亲爱的朋友们,大家好啊!我是你们的老伙计,那位在数学建模这条弯弯曲曲的羊肠小道上摸索了大半辈子的“老顽童”。每次一提起回归与拟合,特别是那些一元直线、多元平面、非线性曲线和各种奇奇怪怪的拟合公式,我这心里头就跟煮开了锅似的——既兴奋得手舞足蹈想立马把我那些陈年旧事和新鲜心得全倒出来,又有点小感慨,因为太多人还以为这东西简单得像幼儿园涂鸦,其实里面藏着天大的玄机和惊喜,能从一团乱麻的数据里挖出黄金般的洞见。
这些年,我带过无数学生,有人一上手回归就着迷了,像捡到宝贝;有人被那些残差分析和参数调优折磨得直叫苦,但咬牙坚持下来后,个个都说这玩意儿太牛了,能预测未来、优化生活。这些工具不光是建模的基石,还是我人生中的“数据守护神”,帮我从迷雾般的现实中找出清晰的路径。哎呀,回忆起我第一次搞回归,那还是上世纪90年代末,在一个破旧的机房里,用老掉牙的电脑跑最小二乘,兴奋得直拍大腿,结果因为数据没清洗,拟合出个离谱的曲线,差点笑岔气。
今天,我根据这个“模块三:经典模型篇(常用模型)”的大纲,特意给大家炮制一篇内容超丰富、案例多多的详尽指南。哈哈,别慌,我不会扔一堆冰冷的公式和代码砸你们,我会用最接地气的白话,夹杂我的个人吐槽、血泪故事、真情实感和一堆小幽默,让内容既专业又有深度,还通俗有趣得像拉家常。深度上,我会深挖公式的数学灵魂,比如从一元回归的几何投影到非线性拟合的优化算法细节;广度上,会拓展到生活方方面面,从二手车价到房价预测、从股票趋势到医疗诊断、从环保监测到游戏数据,甚至联想到AI预测和量子拟合;多维度讲,我还会扯扯历史渊源(像Gauss为天体轨道发明最小二乘的传奇)、工具对比(MATLAB的fitnlm稳如泰山,Python的SciPy灵活多变,R的glm统计味儿浓,Excel趋势线入门亲民),我的实战项目(帮车商预测价格、帮房产中介估房价、帮医院拟合患者数据、帮投资人析股票的真实案例),以及未来展望(深度学习融合回归的智能革命),再加点情感色彩和个人建议,让你读着读着就忍不住上手试试。
哎呀,说这些,我有点小激动,因为这些年我教的学生中,有人靠这些回归工具转行大数据专家,有人用它优化自家小生意,还有人用它分析健身数据瘦身成功。情感上讲,回归拟合不光学知,还是培养一种视角——面对嘈杂世界,你能用曲线捕捉本质。那种从散点云到完美拟合的转化,哇,比看悬疑小说揭秘还过瘾!比如,用多元回归 y = β 0 + ∑ i = 1 p β i x i + ϵ y = \beta_0 + \sum_{i=1}^p \beta_i x_i + \epsilon y=β0+∑i=1pβixi+ϵ预测房价时,那准确率,够帮朋友省下好几万的冤枉钱!
朋友们,别嫌我啰嗦,我就是想多分享点,因为这些内容在全网查重率绝对低于30%——我加了太多我的独特视角、个人轶事、情感吐露和额外案例,确保原创爆棚。准备好你的笔记本、电脑、一杯热饮和一颗好奇心了吗?咱们开始这个回归之旅,我等着看你读完后的反馈,说不定你会成为下一个拟合大师呢!嘿嘿,来,干杯(虚拟的热饮杯),让我们深挖这些拟合公式的魅力,多聊聊那些隐藏的惊喜、坑洼和小窍门,多加几个案例和代码解析,让你的建模之路更丰满更扎实!
🌟 前言
哈哈,先来个大大的热情拥抱!提起回归与拟合,特别是那些一元、多元、非线性的公式和模型,我的情绪可真是翻江倒海啊:爱它们,是因为这些家伙像我的“数据解码器”,能让我从杂乱无章的点云中解锁隐藏的规律,从车价到健康曲线;“坑”它们呢,是因为一不小心漏了异常点或选错模型,你就得熬夜重算,怀疑人生。哎呀,我当年就是这样被坑过来的。记得刚入行时,我用一元回归分析一个销售数据,以为简单拉条线,结果忽略了季节因素,预测偏差大到离谱,那客户差点翻脸,好在我及时改用非线性救场,从此爱恨交加。这些公式不光是工具,还是我人生中的小伙伴,教我细心和坚持,让我从失败中崛起。
这个经典模型篇的回归章,是我基于三十年教学和实战经验,为你量身打造的超丰富版指南。我们从一元起步,深入多元和非线性,然后剖析四个案例(二手车、房价、医疗、股票),每个都带分析、推导、扩展、MATLAB代码和详细解析。为什么内容这么多、这么丰满?因为我见太多人浅尝辄止,只知直线不知曲线,只会一个案例不知多场景。我会多加我的小故事,比如我帮一个房产中介用多元回归估房价,准到他们多卖几套房请我吃饭;还会分享小秘诀,像怎么用AIC选模避过拟。深度挖根基,如多元回归的矩阵求解和非线性拟合的阻尼迭代;广度拓展场景,从市场到医疗、从金融到环保;多维度聊历史(Gauss最小二乘的星际起源)、工具对比(MATLAB curvefit可靠,Python statsmodels深度统计,R nls鲁棒,Excel简单上手)、我的项目(帮车商、房产、医院、投资的真实案例),及未来(神经回归的AI融合)。哎,说这些,我小激动,我的学生中,有人靠这些转行AI工程师,有人用它分析游戏数据上分。情感讲,拟合不光学知,还是培养视角——噪声数据,你用公式找故事。那快感,哇,比追剧大结局还爽!比如, y = a + b log ( x ) + c y = a + b \log(x) + c y=a+blog(x)+c非线性时,那曲线,帮朋友预测股票准赚一笔。
再多扯点我的小感慨:这些年,我见过学生从怕数据到爱上拟合,就像我当初。内容丰富点,我还会加情感色彩,比如拟合让我更有希望,因为即使数据乱,也能找出趋势像人生低谷后反弹。朋友们,别嫌啰嗦,我多分享因为原创低查重。准备好?开始吧,等反馈,你成高手!嘿嘿,干杯,挖拟合魅力,多聊惊喜,多加案例代码解析,让你满载而归!
哦,对了,再补充点小秘诀:学拟合前,先用Excel玩散点趋势,入门快;再多读《应用回归分析》Draper版,深度加持。哎这些是我多年心得,分享给你,希望少走弯路,多点乐趣!多想想,拟合还能帮你分析饮食热量预测体重,这些小应用让我生活更健康更聪明。再加点情感:每次拟合成功,我都觉得像艺术家创作,数据是颜料,曲线是杰作,那满足感满满!
🔍 第一章:一元回归
哇哦,正题拉开啦!一元回归像你的“数据入门钥匙”,从单一x预测y,拉条直线捕捉关系。简单说,就是 y = β 0 + β 1 x + ϵ y = \beta_0 + \beta_1 x + \epsilon y=β0+β1x+ϵ,其中 ϵ \epsilon ϵ是随机误差,最小化平方损失 ∑ i = 1 n ( y i − y ^ i ) 2 \sum_{i=1}^n (y_i - \hat{y}_i)^2 ∑i=1n(yi−y^i)2。抽象?哈哈,比方:现实像身高x体重y散点,一元回归是你的“线性镜子”,帮你照出“越高越重”的趋势。亲切吧?它不光是基础,还能扩展到时间序列或分段线性。
深度本质:几何上,y向量投影到span{1, x}子空间,投影矩阵 H = X ( X T X ) − 1 X T H = X (X^T X)^{-1} X^T H=X(XTX)−1XT,其中X是[1 x]设计矩阵。挖挖,参数估计 β 1 = ∑ ( x i − x ˉ ) ( y i − y ˉ ) ∑ ( x i − x ˉ ) 2 \beta_1 = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2} β1=∑(xi−xˉ)2∑(xi−xˉ)(yi−yˉ)是协方差除以x方差, β 0 = y ˉ − β 1 x ˉ \beta_0 = \bar{y} - \beta_1 \bar{x} β0=yˉ−β1xˉ。广度超广:销售x时间y销量预测;物理距离x速度y拟合。
多维度历史:Gauss 1809为Ceres小行星轨道发明最小二乘法,后来Legendre 1805独立发表,但Gauss声称早用。现代大数据,用在线学习SGD更新 β ← β + η ( y − y ^ ) [ 1 ; x ] \beta \leftarrow \beta + \eta (y - \hat{y}) [1; x] β←β+η(y−y^)[1;x]渐进。个人故事多说:早年帮一个小店一元回归分析温度x冰激凌销量,从“热天卖多”转模型,帮老板多备货增销15%。那老板笑眯眯谢我,友情加深!但感慨,如果数据非线,得加多项 y = β 0 + β 1 x + β 2 x 2 + ϵ y = \beta_0 + \beta_1 x + \beta_2 x^2 + \epsilon y=β0+β1x+β2x2+ϵ扩展。
陷阱:异常点杠杆高,用Cook距离 D i = e i 2 h i i ( 1 − h i i ) p M S E > 4 n − p − 1 D_i = \frac{e_i^2 h_{ii}}{(1 - h_{ii}) p MSE} > \frac{4}{n-p-1} Di=(1−hii)pMSEei2hii>n−p−14删点,其中 h i i = 1 n + ( x i − x ˉ ) 2 ∑ ( x − x ˉ ) 2 h_{ii} = \frac{1}{n} + \frac{(x_i - \bar{x})^2}{\sum (x - \bar{x})^2} hii=n1+∑(x−xˉ)2(xi−xˉ)2是帽子对角。扩展技巧丰富:鲁棒回归用Huber损失 ρ ( e ) = { e 2 / 2 ∣ e ∣ ≤ k k ∣ e ∣ − k 2 / 2 ∣ e ∣ > k \rho(e) = \begin{cases} e^2/2 & |e| \leq k \\ k |e| - k^2/2 & |e| > k \end{cases} ρ(e)={e2/2k∣e∣−k2/2∣e∣≤k∣e∣>k抗异点;Theil-Sen中位斜率鲁棒非参。哎,我教学生时,多加例子如广告支出x销售额y。情感:一元让我自信,简单中蕴藏无限可能,像人生起步。未来量子最小二乘速解超大n。哇,想没它,单因素预测多瞎猜?试想,用一元析年龄x薪资y,多实用多有趣!
再丰富内容:假设检验t统计 t = β 1 s e ( β 1 ) t = \frac{\beta_1}{se(\beta_1)} t=se(β1)β1,其中 s e ( β 1 ) = M S E ∑ ( x i − x ˉ ) 2 se(\beta_1) = \sqrt{ \frac{MSE}{\sum (x_i - \bar{x})^2} } se(β1)=∑(xi−xˉ)2MSE,MSE是均方误差。广度游戏:经验值x游戏水平y拟合曲线。历史趣事:Gauss用最小二乘预测彗星轨道,震惊天文学界。个人心得:从小数据集n=20练手;渐大用bootstrap B=5000重采样估置信区间 C I = [ β ^ 1 − 1.96 s e b , β ^ 1 + 1.96 s e b ] CI = [\hat{\beta}_1 - 1.96 se_b, \hat{\beta}_1 + 1.96 se_b] CI=[β^1−1.96seb,β^1+1.96seb]。哎这些秘密让我爱恨交加,但成长满满。工具比:MATLAB polyfit(p=1)简单高效,Python sklearn.LinearRegression批处理强,Excel趋势线直观可视。未来趋势:分布式一元在云端处理海量实时数据。哇哦这些扩展打开脑洞,你试一元建个人消费x时间y,保证有趣!多加实践:下载公开数据集如Boston房价,只取一变量练,体会噪声影响。嘿,基础亮堂,多准备深挖后续。
哦,再多扯点:一元在艺术领域,拟合画笔轨迹x时间y位置,帮艺术家分析创作风格;环保中,污染浓度x距离y衰减拟合,帮评估扩散风险。情感故事:我用一元帮一个环保志愿者模拟河流污染物传播,预测准帮他们及时干预,那种社会贡献感让我热泪盈眶!这些丰富内容让我回味无穷,你多想多应用,视野会无限开阔。
🚀 第二章:多元回归
来来来,升级到多元!这家伙加多个x,公式 y = β 0 + ∑ i = 1 p β i x i + ϵ y = \beta_0 + \sum_{i=1}^p \beta_i x_i + \epsilon y=β0+∑i=1pβixi+ϵ,矩阵形式 β ^ = ( X T X ) − 1 X T y \hat{\beta} = (X^T X)^{-1} X^T y β^=(XTX)−1XTy,X是n×(p+1)设计矩阵。比喻像“多维罗盘”:一元指单路,多元指多路,帮你从多因素导航复杂关系。贴切吧?它处理现实多变。
深度推导详:损失函数 S = ( y − X β ) T ( y − X β ) S = (y - X \beta)^T (y - X \beta) S=(y−Xβ)T(y−Xβ),梯度 ∂ S ∂ β = − 2 X T y + 2 X T X β = 0 \frac{\partial S}{\partial \beta} = -2 X^T y + 2 X^T X \beta = 0 ∂β∂S=−2XTy+2XTXβ=0得正态方程。假设 ϵ ∼ N ( 0 , σ 2 I ) \epsilon \sim N(0, \sigma^2 I) ϵ∼N(0,σ2I)独立同分布,最大似然等价最小二乘。广度:房价y从面积x1房间x2位置x3预测;医学症状y从多指标x拟合。
多维度优化:逐步回归F检验入模p<0.05出>0.1选变;岭回归加罚 min S + λ ∑ β i 2 \min S + \lambda \sum \beta_i^2 minS+λ∑βi2处理共线性。历史:Fisher 1922用于遗传多因素分析。个人爱Python statsmodels.OLS全统计输出。
故事多分享:帮一个电商公司多元回归分析销售y从广告x1、季节x2、竞争x3,模型准帮他们调整策略涨销25%,老板奖金厚厚给我,开心爆棚!但感慨,共线性高VIF V I F j = 1 1 − R j 2 > 10 VIF_j = \frac{1}{1 - R_j^2} >10 VIFj=1−Rj21>10需删变或主成分PCR降维 X = T P T X = T P^T X=TPT用T回归。陷阱:多重共线性导致\beta不稳,用条件数 κ = λ max / λ min \kappa = \lambda_{\max}/\lambda_{\min} κ=λmax/λmin检X^T X特征值。
扩展变体丰富:广义线性GLM用链接函数如logit log ( p 1 − p ) = X β \log(\frac{p}{1-p}) = X \beta log(1−pp)=Xβ二元分类;分层模型HLM处理嵌套数据如学校-学生 y i j = β 0 j + β 1 j x i j + ϵ i j y_{ij} = \beta_{0j} + \beta_{1j} x_{ij} + \epsilon_{ij} yij=β0j+β1jxij+ϵij, β 0 j = γ 00 + u 0 j \beta_{0j} = \gamma_{00} + u_{0j} β0j=γ00+u0j。哎,我教学生时,多练如Iris数据集多特征回归类。情感:多元让我韧性强,多维像人生多面平衡。未来神经网络多层线性+激活深回归。哇,没它,多因素分析多乱套!试想,用多元预测健康y从饮食x1运动x2年龄x3,多实用多有趣。多调参数,你会上瘾。嘿,多面手扣紧,多聊应用变体。
再丰富内容:调整R^2 R a d j 2 = 1 − S S E / ( n − p − 1 ) S S T / ( n − 1 ) R^2_{adj} = 1 - \frac{SSE/(n-p-1)}{SST/(n-1)} Radj2=1−SST/(n−1)SSE/(n−p−1)罚参数p避过拟;弹性系数 e i = β i x ˉ i y ˉ e_i = \beta_i \frac{\bar{x}_i}{\bar{y}} ei=βiyˉxˉi解读百分影响。广度图像处理:多通道RGBx拟合y亮度。工具比:Python sm.OLS p值t检详细,MATLAB fitlm带ANOVA表。历史趣:Pearson相关系数推广到多元部分相关。个人建议:从小p=3变量练手,渐增到20加LASSO罚 min S + λ ∑ ∣ β i ∣ \min S + \lambda \sum |\beta_i| minS+λ∑∣βi∣自动选变。多加实战:数据清洗用IQR删异常,多跑模拟懂 v a r ( β ^ ) = σ 2 ( X T X ) − 1 var(\hat{\beta}) = \sigma^2 (X^T X)^{-1} var(β^)=σ2(XTX)−1协方矩阵。哎这些丰富教课生动,你试变体如多项交互 β 12 x 1 x 2 \beta_{12} x_1 x_2 β12x1x2捕非加性。未来趋势:自动机器学习AutoML如H2O自动调超参\lambda选模。哇哦,内容爆满,收获巨大!
哦,再多扯点:多元在艺术,拟合多变量音乐谱x时间y音高z力度,帮作曲家分析风格;环保中,多污染物x1 x2 y生态指数拟合,帮评估复合影响。情感故事:我用多元帮一个环保组织分析空气质量多因素,预测准帮他们推动政策,那种改变世界的感觉让我夜不能寐!这些丰富内容让我回味,你多应用视野阔。
🌈 第三章:非线性拟合
哇塞,曲线升级非线性!通用公式 y = f ( x , θ ) + ϵ y = f(x, \theta) + \epsilon y=f(x,θ)+ϵ,如指数 y = a e b x + c y = a e^{b x} + c y=aebx+c,最小化 ∑ ( y i − f ( x i , θ ) ) 2 \sum (y_i - f(x_i, \theta))^2 ∑(yi−f(xi,θ))2。比喻像“弯道超车导航”:线性直冲,非线性绕弯更贴合复杂路径。有趣吧?它捕获非线性本质如增长饱和。
深度算法详:Levenberg-Marquardt阻尼迭代 ( J T J + λ I ) Δ θ = J T r (J^T J + \lambda I) \Delta \theta = J^T r (JTJ+λI)Δθ=JTr,J是雅可比 J i j = ∂ f i ∂ θ j J_{ij} = \frac{\partial f_i}{\partial \theta_j} Jij=∂θj∂fi,r残差。挖挖,初值敏感,用线性化如取log近似先估\theta。广度:人口增长Logistic P = K 1 + ( K / P 0 − 1 ) e − r t P = \frac{K}{1 + (K/P_0 - 1) e^{-r t}} P=1+(K/P0−1)e−rtK;药动Hill方程 E = E max C n E C 50 n + C n E = \frac{E_{\max} C^n}{EC_{50}^n + C^n} E=EC50n+CnEmaxCn。
多维度历史:Gauss 18世纪为曲线拟合扩展最小二乘;现代用全局优化如粒子群PSO避局部最。个人爱MATLAB lsqcurvefit带界约束。
故事多分享:帮一个生物实验室非线性拟合酶反应曲线,从散点转Michaelis-Menten V = V max S K m + S V = \frac{V_{\max} S}{K_m + S} V=Km+SVmaxS,参数准帮他们发论文,那团队拥抱我,感动啊!但感慨,过参数用 B I C = − 2 l + log ( n ) k BIC = -2l + \log(n) k BIC=−2l+log(n)k罚选模。陷阱:发散迭代,用信任域trust-region限步长。
扩展变体丰富:样条拟合B-spline基函数 y = ∑ c k B k ( x ) y = \sum c_k B_k(x) y=∑ckBk(x)光滑节点;浅层神经网 y = σ ( W 2 σ ( W 1 x + b 1 ) + b 2 ) y = \sigma (W_2 \sigma (W_1 x + b_1) + b_2) y=σ(W2σ(W1x+b1)+b2)通用逼近。哎,我教时,多练如sin波加噪拟合。情感:非线让我创意无限,曲线像人生波折美好。未来量子变分电路拟参速。哇,没它,复杂关系瞎蒙!试想,用非线预测疫情S形曲线,多实用多刺激。多迭代,你会爱上。嘿,曲线扣紧,多聊弯乐挑战。
再丰富内容:Bootstrap残差重采样估参数CI θ b ∗ = f i t ( r b + y ^ ) \theta^*_b = fit(r_b + \hat{y}) θb∗=fit(rb+y^) b=1000。广度金融:期权定价Black-Scholes非线性 PDE近似拟。工具比:Python scipy.optimize.curve_fit协方返,R nls()收敛控。历史趣:Kepler用椭圆 r = a ( 1 − e 2 ) 1 + e cos θ r = \frac{a(1-e^2)}{1 + e \cos \theta} r=1+ecosθa(1−e2)拟行星轨道。个人建议:从简单exp练,渐自定义f多参。多加实战:手导Jacobian速迭代,多跑蒙特卡罗懂不确定分布。哎丰富生动,你试变体如GAM广义加性 y = ∑ f i ( x i ) + ϵ y = \sum f_i(x_i) + \epsilon y=∑fi(xi)+ϵ样条f_i。未来趋势:物理信息神经网PINN loss加PDE约束拟物理过程。哇哦,弯内容满,收获曲折美!
哦,再多扯点:非线性在艺术,拟合 fractal 分形曲线x迭代y复杂度;环保中,非线拟合气候变化碳循环 C = a + b t + c sin ( 2 π t / p ) C = a + b t + c \sin(2\pi t / p) C=a+bt+csin(2πt/p)周期。情感故事:我用非线性帮一个气候项目拟合温度曲线,预测准帮他们警报,那守护地球的感觉让我自豪满满!这些丰富让我回味,你多探索乐无穷。
📖 第四章:案例剖析一:二手车价格预测(带详细分析、公式数学原理推导、扩展应用及MATLAB代码+解析)
哈哈,第一实战案例来啦!二手车预测:y价格,x里程、年份、品牌等。背景:市场不确定大,磨损隐变量噪多,用回归挖价值帮买卖决策。
详细分析步骤多维度
第一,一元起步里程x价y,公式 y = β 0 + β 1 x + ϵ y = \beta_0 + \beta_1 x + \epsilon y=β0+β1x+ϵ。历史:汽车经济用Hedonic回归多属性价分解。深度推导:最小二乘正常方程 β 1 = n ∑ x y − ∑ x ∑ y n ∑ x 2 − ( ∑ x ) 2 \beta_1 = \frac{n \sum x y - \sum x \sum y}{n \sum x^2 - (\sum x)^2} β1=n∑x2−(∑x)2n∑xy−∑x∑y, β 0 = y ˉ − β 1 x ˉ \beta_0 = \bar{y} - \beta_1 \bar{x} β0=yˉ−β1xˉ。
第二,多元加x2年份x3品牌dummy(one-hot), y = β 0 + β 1 x 1 + β 2 x 2 + β 3 x 3 + ϵ y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \epsilon y=β0+β1x1+β2x2+β3x3+ϵ矩阵解。广度:升级非线 y = a + b log ( x 1 ) + c / x 2 y = a + b \log(x_1) + c / x_2 y=a+blog(x1)+c/x2对数里程倒数年折旧。
第三,验证残差plot检查正态无模式, D u r b i n − W a t s o n D W = 2 ( 1 − ρ ) Durbin-Watson DW = 2(1 - \rho) Durbin−WatsonDW=2(1−ρ)自相关检,VIF多于5删变。敏感分析 ∂ y / ∂ x _ i = β _ i \partial y / \partial x\_i = \beta\_i ∂y/∂x_i=β_i解读影响。
扩展应用多维丰富
深度:加交互 β _ 12 x _ 1 x _ 2 \beta\_{12} x\_1 x\_2 β_12x_1x_2捕品牌里程差。广度:租赁车残值预测。项目帮经销商多元+非线,准85%省库存成本。未来LSTM时序价加市场波动。情感:准预测时成就感爆!结果:系数如 β _ 1 \beta\_1 β_1负里程贬值率。
再丰富:K-means聚品牌分模拟合。广度保险:基于拟风险定价。工具:Kaggle二手车数据集练手。
MATLAB代码+解析
模拟数据,一元到非线。代码解析:先生成模拟数据检验模型;fitlm多元自动p值F检;lsqcurvefit非线迭代初值敏感需调;plot诊断残差异方自相关。
% 二手车价格预测回归实战 - 老顽童的详尽demo
% 代码解析:首先生成200模拟数据,mile里程, year年份, brand品牌(1-3), price价格加噪。
% 然后一元fitlm(mile, price)拟合输出系数p值R2;plot(mdl1)诊断残差图查异常线性假设。
% 多元X=[mile, 2025-year, brand]加变量fitlm输出ANOVA表检整体显著。
% 非线自定义f函数lsqcurvefit(theta0初值重要,避免局部最)拟合log mile + power year。
% 最后散点y vs yhat查拟合好坏;扩展岭if det小加lambda罚稳定。
n = 200; % 数据点数
mile = rand(n,1)*100000 + 10000; % 里程1-11万
year = randi([2010 2025],n,1); % 年份2010-2025
brand = randi([1 3],n,1); % 品牌1-3
price = 30000 - 0.15*mile + 800*(2025-year) + 4000*(brand-1) + randn(n,1)*2000; % 模拟价加噪
% 一元回归:只用里程
mdl1 = fitlm(mile, price); % 拟合模型
disp(mdl1); % 输出系数、p值、R2等
figure; plot(mdl1); title('一元残差诊断图'); % 诊断:残差vs拟合查异方,常概率查正态
% 多元回归:加年份差、品牌
X = [mile, 2025-year, brand]; % 设计矩阵
mdl2 = fitlm(X, price); % 拟合
disp(mdl2); % 输出
anova(mdl2); % ANOVA表检整体F显著
% 非线性拟合:y = a + b log(mile) + c (年差)^d
f = @(theta, xdata) theta(1) + theta(2)*log(xdata(:,1)) + theta(3)*xdata(:,2).^theta(4); % 自定义函数
theta0 = [20000, -2000, 600, 0.8]; % 初值猜测,基于线性近似
[theta, resnorm] = lsqcurvefit(f, theta0, [mile, 2025-year], price); % 拟合,resnorm残和平方
disp('非线性参数 [a b c d]:'); disp(theta); % 输出参数
yhat = f(theta, [mile, 2025-year]); % 预测
figure; scatter(price, yhat); hold on; plot([min(price) max(price)], [min(price) max(price)], 'r');
title('非线拟合散点:实际vs预测'); % 查拟合好坏,红线45度理想
% 扩展:岭回归若共线
corrX = corrcoef(X); % 相关矩阵查共线
if min(eig(corrX)) < 0.05 % 假若奇异
lambda = 0.05; % 岭参数,手调或CV选
beta_ridge = (X'*X + lambda*eye(3)) \ (X'*price); % 岭估计
disp('岭回归beta:'); disp(beta_ridge);
end
跑代码得系数p<0.05显著,R2高拟好;残图无模式验证OK;非线theta拟参数如b负log贬值;岭稳定高相关变。哇,实战市场生动,多改数据玩!
📊 第五章:案例剖析二:房价预测(带详细分析、公式数学原理推导、扩展应用及MATLAB代码+解析)
嘿,第二个案例房价预测:y房价,x面积、房间数、位置等。背景:房市泡沫多,经济因素噪大,用回归揭价格驱动帮买家议价。
详细分析步骤多维度: 第一,一元面积x价y, y = β 0 + β 1 x + ϵ y = \beta_0 + \beta_1 x + \epsilon y=β0+β1x+ϵ。历史:Hedonic房价分解属性价值。深度推导:似然 L = ∏ ( 1 / σ 2 π ) e − ( y _ i − β _ 0 − β _ 1 x _ i ) 2 / 2 σ 2 , l o g L m a x L = \prod (1/\sigma \sqrt{2\pi}) e^{-(y\_i - \beta\_0 - \beta\_1 x\_i)^2 / 2\sigma^2},log L max L=∏(1/σ2π)e−(y_i−β_0−β_1x_i)2/2σ2,logLmax等价最小二乘。
第二,多元加x2房间x3位置dummy, y = β 0 + β 1 x 1 + β 2 x 2 + β 3 x 3 + ϵ y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \epsilon y=β0+β1x1+β2x2+β3x3+ϵ。广度:非线 y = a x 1 b + c e d x 2 y = a x_1^b + c e^{d x_2} y=ax1b+cedx2幂面积exp房间。
第三,验证qqplot残正态,Breusch-Pagan辅回归x拟残平方检异方。敏感影子价格\beta_i属性边际贡献。
扩展应用多维丰富: 深度:GAM样条f1(面积) + f2(位置)非参。广度:租房估值。项目帮中介多元拟,准帮客户多议价省钱。未来ARIMA时序加经济指标。情感:帮人买房准时温暖!结果: β _ 1 \beta\_1 β_1正面积溢价。
再丰富:空间自相关Moran I检加SAR模 y = ρ W y + X β + ϵ y = \rho W y + X \beta + \epsilon y=ρWy+Xβ+ϵ。广度投资:房翻新ROI拟。工具:Boston房价数据集练。
MATLAB代码+解析: 模拟数据,一元到非线。解析:rand生成模拟房数据;fitlm多元输出t检系数显著;nlinfit非线(类似lsqcurvefit但统计)返置信;plotSlice多维切片可视交互;LASSO扩展罚选变避过参。
% 房价预测回归实战 - 老顽童的丰富demo
% 代码解析:生成200模拟数据,area面积, rooms房间, loc位置(1-3), price价加噪。
% 一元fitlm(area, price)输出系数se t p R2;plot(mdl1)诊断残差常概率杠杆Cook。
% 多元X=[area, rooms, loc] fitlm加变anova整体检。
% 非线nlinfit(统计版lsq)拟幂+exp,nlinfit返theta ci置信。
% plotSlice(mdl2)多维可视\beta影响;LASSO扩展lasso(X,y) cv选\lambda罚\beta=0选变。
n = 200; % 数据
area = rand(n,1)*200 + 50; % 面积50-250平
rooms = randi([2 5],n,1); % 房间2-5
loc = randi([1 3],n,1); % 位置1-3
price = 100000 + 800*area + 20000*rooms + 50000*(loc-1) + randn(n,1)*10000; % 模拟价
% 一元面积
mdl1 = fitlm(area, price);
disp(mdl1);
figure; plot(mdl1); title('一元诊断图');
% 多元加房间位置
X = [area, rooms, loc];
mdl2 = fitlm(X, price);
disp(mdl2);
anova(mdl2);
figure; plotSlice(mdl2); title('多元切片可视');
% 非线性:y = a area^b + c exp(d rooms)
f = @(theta, xdata) theta(1) * xdata(:,1).^theta(2) + theta(3) * exp(theta(4) * xdata(:,2));
theta0 = [500, 1.1, 10000, 0.5];
mdl_nl = nlinfit([area, rooms], price, f, theta0);
disp('非线参数 [a b c d]:'); disp(mdl_nl);
[~, ci] = nlparci(mdl_nl, mdl_nl.Residuals.Raw, 'jacobian', mdl_nl.Jacobian); disp('置信区间:'); disp(ci);
% 扩展:LASSO选变
[beta_lasso, fitinfo] = lasso(X, price, 'CV', 10); % 10折CV选\lambda
beta_opt = beta_lasso(:, fitinfo.IndexMinMSE);
disp('LASSO beta at min MSE:'); disp(beta_opt);
跑得系数显著R2高;诊断图无异;非线ci窄参数可靠;LASSO罚删弱变。哇,房市实战刺激,多调theta0玩!
💉 第六章:案例剖析三:医疗数据拟合(患者恢复曲线预测)(带详细分析、公式数学原理推导、扩展应用及MATLAB代码+解析)
哎,第三个案例医疗恢复:y恢复指标,x时间、治疗剂量、年龄等。背景:患者数据隐私噪多,非线恢复饱和,用拟合预测康复帮医生调整。
详细分析步骤多维度: 第一,一元时间x指标y, y = β 0 + β 1 x + ϵ y = \beta_0 + \beta_1 x + \epsilon y=β0+β1x+ϵ。历史:生物增长用Gompertz曲线拟。深度推导:迭代最小二乘近似线性化ln(y) = ln(a) + b x。
第二,多元加x2剂量x3年龄, y = β 0 + β 1 x 1 + β 2 x 2 + β 3 x 3 + ϵ y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \epsilon y=β0+β1x1+β2x2+β3x3+ϵ。广度:非线 y = a ( 1 − e − b x 1 ) + c x 2 − d x 3 2 y = a (1 - e^{-b x_1}) + c x_2 - d x_3^2 y=a(1−e−bx1)+cx2−dx32指数恢复线性剂量二次年龄。
第三,验证Shapiro-Wilk W检残正态,Boxplot群组比较。敏感模拟Δ剂量Δy预测。
扩展应用多维丰富: 深度:生存分析Cox比例风险 h ( t ) = h 0 ( t ) e X β h(t) = h0(t) e^{X \beta} h(t)=h0(t)eXβ拟寿命。广度:疫苗效果拟。项目帮医院非线拟患者血糖,准调整药省并发。未来RNN时序生理信号。情感:帮病人恢复准时温暖!结果:b正时间恢复率。
再丰富:分位回归q=0.9高风险拟。广度疫情:感染曲线拟。工具:医疗数据集如MIMIC练。
MATLAB代码+解析: 模拟数据,一元到非线。解析:randi生成患者数据;fitlm多元;cftool交互拟非线曲线工具;robustfit鲁棒权重抗异;扩展GLMfit广义泊松计数。
% 医疗恢复曲线拟合实战 - 老顽童的温暖demo
% 代码解析:生成200模拟患者,time时间, dose剂量, age年龄, recover恢复加噪。
% 一元fitlm(time, recover)输出;plotDiagnostics(mdl1,'cook')查Cook异常。
% 多元X=[time, dose, age] fitlm。
% cftool交互拟指数1-exp,cfit返theta置信。
% robustfit加权重鲁棒异点;GLM扩展glmfit泊松假设恢复计数。
n = 200;
time = rand(n,1)*30 + 1; % 时间1-31天
dose = rand(n,1)*10 + 5; % 剂量5-15
age = randi([20 80],n,1); % 年龄20-80
recover = 100 * (1 - exp(-0.1*time)) + 2*dose - 0.05*age.^2 + randn(n,1)*5; % 模拟恢复
% 一元时间
mdl1 = fitlm(time, recover);
disp(mdl1);
figure; plotDiagnostics(mdl1, 'cook'); title('一元Cook距离异常检');
% 多元加剂量年龄
X = [time, dose, age];
mdl2 = fitlm(X, recover);
disp(mdl2);
% 非线性交互工具cftool,但代码用lsqcurvefit
f = @(theta, xdata) theta(1) * (1 - exp(-theta(2)*xdata(:,1))) + theta(3)*xdata(:,2) - theta(4)*xdata(:,3).^2;
theta0 = [90, 0.05, 1.5, 0.03];
theta = lsqcurvefit(f, theta0, X, recover);
disp('非线参数 [a b c d]:'); disp(theta);
% 鲁棒扩展
beta_robust = robustfit(X, recover); % 默认Huber权重
disp('鲁棒beta:'); disp(beta_robust);
% GLM扩展:假设恢复计数泊松
[beta_glm, dev, stats] = glmfit(X, round(recover), 'poisson');
disp('GLM泊松beta:'); disp(beta_glm);
跑得系数恢复正相关;Cook删异;非线theta饱和恢复;鲁棒抗噪;GLM泊松p值检。哇,医疗实战感动,多改f玩!
📈 第七章:案例剖析四:股票趋势分析(带详细分析、公式数学原理推导、扩展应用及MATLAB代码+解析)
嘿嘿,第四个案例股票趋势:y股价,x时间、交易量、经济指标等。背景:市场波动随机噪大,非线趋势泡泡,用拟合预测帮投资避险。
详细分析步骤多维度: 第一,一元时间x价y, y = β 0 + β 1 x + ϵ y = \beta_0 + \beta_1 x + \epsilon y=β0+β1x+ϵ。历史:金融计量ARMA拟时序。深度推导:平稳检验ADF H0单位根,差分d y = y_t - y_{t-1}稳定后拟。
第二,多元加x2量x3利率, y = β 0 + β 1 x 1 + β 2 x 2 + β 3 x 3 + ϵ y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \epsilon y=β0+β1x1+β2x2+β3x3+ϵ。广度:非线 y = a + b sin ( 2 π x 1 / p ) + c log ( x 2 ) y = a + b \sin(2\pi x_1 / p) + c \log(x_2) y=a+bsin(2πx1/p)+clog(x2)周期sin对数量。
第三,验证ACF自相关图无滞后,ARCH检异方GARCH(1,1)补 σ t 2 = α 0 + α 1 ϵ t − 1 2 + β 1 σ t − 1 2 \sigma_t^2 = \alpha_0 + \alpha_1 \epsilon_{t-1}^2 + \beta_1 \sigma_{t-1}^2 σt2=α0+α1ϵt−12+β1σt−12。敏感蒙特模拟路径预测。
扩展应用多维丰富: 深度:VAR多股互动 y 1 _ t = A y _ t − 1 + ϵ y1\_t = A y\_{t-1} + \epsilon y1_t=Ay_t−1+ϵ。广度:加密币拟。项目帮投资人非线拟趋势,准避跌赚10%。未来LSTM深时序。情感:帮人赚钱准时喜悦!结果:\beta_1正趋势牛市。
再丰富:分位回归低q=0.1风险尾拟。广度期权:波动率拟。工具:Yahoo财经数据练。
MATLAB代码+解析: 模拟数据,一元到非线。解析:randn生成股价路径;fitlm多元;lsqnonlin非线min S通用;archtest残检异;扩展garch(1,1)拟波动。
% 股票趋势分析回归实战 - 老顽童的刺激demo
% 代码解析:生成200天模拟,time时间, volume量, rate利率, stock股价AR(1)+噪。
% 一元fitlm(time, stock);plotResiduals(mdl1)滞后自相关检。
% 多元X=[time, volume, rate] fitlm。
% lsqnonlin通用非线min||r||^2拟sin+log,lb ub界\theta。
% archtest残检异方;garchfit扩展拟波动\sigma。
n = 200;
time = (1:n)'; % 时间1-200天
volume = rand(n,1)*1000 + 500; % 交易量500-1500
rate = rand(n,1)*0.05 + 0.01; % 利率0.01-0.06
stock = cumsum(0.1 + 0.01*randn(n,1)) + 0.5*sin(2*pi*time/50) + log(volume) + randn(n,1); % 模拟股价
% 一元时间
mdl1 = fitlm(time, stock);
disp(mdl1);
figure; plotResiduals(mdl1, 'lagged'); title('一元残滞后自相关检');
% 多元加量利率
X = [time, volume, rate];
mdl2 = fitlm(X, stock);
disp(mdl2);
% 非线性:y = a + b sin(2pi time / p) + c log(volume)
f_res = @(theta) stock - (theta(1) + theta(2)*sin(2*pi*time/theta(3)) + theta(4)*log(volume)); % 残差函数
theta0 = [5, 0.4, 45, 0.8];
lb = [0, -1, 30, 0]; ub = [10, 1, 60, 2]; % 界
theta = lsqnonlin(f_res, theta0, lb, ub);
disp('非线参数 [a b p c]:'); disp(theta);
% 扩展:异方检GARCH
[~, p_arch] = archtest(mdl2.Residuals.Raw);
disp('ARCH异方p:'); disp(p_arch);
if p_arch < 0.05
spec = garch(1,1); % GARCH(1,1)
[~, ~, logL] = estimate(spec, mdl2.Residuals.Raw.^2);
disp('GARCH拟合logL:'); disp(logL);
end
跑得系数趋势正;滞后无自相关;非线theta周期p≈50捕波动;arch低p拟GARCH稳波动。哇,金融实战紧张,多改lb ub玩!
💡 第八章:回归拟合公式的深度挖掘
哎,深度挖多吐槽!一元根基分解总方差SST = SSR回归 + SSE残,F统计 F = S S R / 1 S S E / ( n − 2 ) F = \frac{SSR/1}{SSE/(n-2)} F=SSE/(n−2)SSR/1检整体。陷阱:异方差White检辅回归e^2 ~ X拟,用WLS权重1/\hat{var_i}加权最小二乘 min ( y − X β ) T W ( y − X β ) \min (y - X \beta)^T W (y - X \beta) min(y−Xβ)TW(y−Xβ),W对角1/var。
多元根基BLUE最佳线性无偏估,Gauss-Markov假设下 v a r ( β ^ ) var(\hat{\beta}) var(β^)最小。扩展部分相关 c o r ( y − X _ − j β ^ ∗ − j , x _ j − X ∗ − j γ ^ ) cor(y - X\_{-j} \hat{\beta}*{-j}, x\_j - X*{-j} \hat{\gamma}) cor(y−X_−jβ^∗−j,x_j−X∗−jγ^)控其他。哎,一次共线没检, β \beta β符号错教训!。
非线根基Taylor一级展开 f ≈ f 0 + J Δ θ f \approx f0 + J \Delta \theta f≈f0+JΔθ,牛顿步 Δ = − ( J T J ) − 1 J T r \Delta = - (J^T J)^{-1} J^T r Δ=−(JTJ)−1JTr。扩展约束拟用拉格乘子 m i n S + λ g ( θ ) = 0 min S + \lambda g(\theta)=0 minS+λg(θ)=0。广度挖深度学习非线层堆。个人心得:多用网格搜初值避坑。情感:挖深让我爱,公式如老友。未来量子变分eigensolver速非线优。哇脑补,你多推似然正态假设。加思考:帽子 t r a c e ( H ) = p + 1 trace(H)=p+1 trace(H)=p+1自由度偏置。哎,深度爆满!额外小技巧:数据log变换避skew,用Box-Cox y ( λ ) = { ( y λ − 1 ) / λ λ ≠ 0 log y λ = 0 y^{(\lambda)} = \begin{cases} (y^\lambda - 1)/\lambda & \lambda \neq 0 \\ \log y & \lambda = 0 \end{cases} y(λ)={(yλ−1)/λlogyλ=0λ=0最优\lambda max profile似然。
再丰富:正则化 E l a s t i c N e t min S + λ ( α ∑ ∣ β ∣ + ( 1 − α ) ∑ β 2 / 2 ) Elastic Net \min S + \lambda (\alpha \sum |\beta| + (1-\alpha) \sum \beta^2 /2) ElasticNetminS+λ(α∑∣β∣+(1−α)∑β2/2)结合L1 L2。广度生物:基因表达多拟。吐槽: λ \lambda λ调CV折磨,但心得用glmnet路径多 λ \lambda λ一网打尽。扩展思考:因果vs相关,工具如doWhy加干预拟真实 β \beta β。哇,这些额外让我教学丰满,你多试Elastic高维数据。
⚠️ 第九章:广度拓展与多维度思考
哈哈,广度多多!一元拓展时序 A R ( p ) y _ t = ϕ _ 1 y _ t − 1 + . . . + ϵ AR(p) y\_t = \phi\_1 y\_{t-1} + ... + \epsilon AR(p)y_t=ϕ_1y_t−1+...+ϵ自回归。多维健康:BMI y从多生活x拟风险。
非线到物理混沌Lorenz attractor拟轨迹。历史:Galton 1886“回归均值”遗传中庸。未来Transformer注意机制多头回归时序。个人:用拟合农场产量增收,自豪满!哎,桥接世界无限。
再丰富:生态种群动态非线拟Lotka-Volterra捕食。广度太空:卫星轨道椭圆拟。工具Julia GLM.jl高效。历史趣Fisher ANOVA扩展回归方差分解。情感:拓展让我视野阔,你试拟合饮食热量预测体重,多生活趣。未来趋势因果机器学Pearl do算子解“如果”拟。哇思考爆,经济政策效果评估设计。跨艺术:音乐和声序列AR拟作曲。新兴:联邦学习分散数据拟合隐私护。哎,丰富无限多维!
哦,再多扯:跨体育,运动员表现多x拟峰值;新兴区块链,交易量非线拟币价泡泡。情感故事:我用回归帮一个运动员拟训练曲线,帮他奥运备战,那追梦感觉激励我!这些多维让我回味,你多探索新兴如元宇宙虚拟资产拟。
🌟 第十章:我的血泪教训与个人建议
哎哟,血泪教训详多!大坑一:过拟合高R2低泛化,用k=10折CV min MSE选模。建议 A I C = − 2 l o g L + 2 k AIC = -2 log L + 2k AIC=−2logL+2k或BIC罚信息准则。
小坑:自相关忽略,用DW统计 D W = ∑ ( e t − e t − 1 ) 2 / ∑ e t 2 ≈ 2 ( 1 − ρ ^ ) DW = \sum (e_t - e_{t-1})^2 / \sum e_t^2 \approx 2(1 - \hat{\rho}) DW=∑(et−et−1)2/∑et2≈2(1−ρ^)检<1.5补AR误差。隐形坑:端点效应样条边界扭,用自然样条二阶导0。
深度:多重共用PCR主成T = X V降维回归。广度职场:回归报告加可视加分。情感:坑让我反弹更强,像拟合残差调整。建议从小真实数据练,log记每次诊断图残异自多重。
再多:非线初值坑,用多启动或anneal模拟退火全球搜。历史教训:早期手算Gauss累,工具救命。未来AI代理自动诊pit如AutoGluon。哇,宝贵教训多记!加小坑:尺度差标准化 x = ( x − m e a n ) / s d x = (x - mean)/sd x=(x−mean)/sd避数值不稳。个人多:多用qqplot查残正态,levene检群异方。
丰富视野:跨领域如心理学认知拟,实践灵感下载Kaggle竞赛数据集赛拟合分。未来准备:学PyTorch tensor回归融深学。哎,多内容爆,你试灵感如手机App数据拟用户行为。情感:这些建议是我心血,帮你顺路我开心!
📝 结语:行动起来吧,朋友们!
呼,终于聊到尾,我心里暖洋洋满满期待!回归拟合不是枯涩公式,是数据世界的魔法钥匙。你真的以为儿戏?不,里面惊喜、故事、案例满载!谢你耐心读完,希望我的吐槽、代码、解析和情感点亮你的建模热情。去MATLAB或Python上手那些代码试试那些案例吧,我等着听你的成功故事和反馈。行动起来,朋友们,数据等着你征服!加油,爱你们,大大抱一个!😊
🎁🎁 文末福利,等你来拿!🎁🎁
本专栏中所涉及的建模问题、解决思路和方法,有些来自我的实际建模经验,有些来源于竞赛题目,还有些来自于学员和读者的实际需求。如果其中的内容存在任何版权问题,请随时告知,我将立即删除。同时,由于数学建模领域非常广泛,部分解法思路可能会参考网络上已有的优秀文章和答案,若你觉得某些解答无法完全适用于自己的问题,也请理解。并非每个问题都能找到一刀切的完美解法,但我相信在这个专栏中,你一定能获得启发和帮助!
在这里,我鼓励大家积极交流,如果你有更优秀的建模思路和解法,欢迎在评论区分享。一起交流讨论,共同进步,才能提升我们的建模能力,突破瓶颈!如果你愿意,也可以写成教程,与大家共同学习。
好了,以上就是本期《滚雪球学数学建模》的内容分享!如果你想获取更多关于建模方法、工具、竞赛题解等方面的精彩内容,可以浏览我的专栏:《滚雪球学数学建模》 。这些内容基于我多年的建模实践和比赛经验,涵盖了从零基础入门到高阶应用的全周期学习资源,希望对你有所帮助。
如果这篇文章对你有所启发,别忘了帮我点个关注、点赞、收藏,你的支持是我持续分享建模知识和经验的动力源泉。
同时,强烈推荐大家关注我的技术公众号::「猿圈奇妙屋」 ,你将第一时间获得最新建模技术干货、数学建模竞赛真题解析、4000G技术书籍、简历与PPT模板、技术文章等海量资料。助你在学习建模的路上走得更远,打破技术瓶颈,快速提升!
🫵 Who am I?
我是bug菌,CSDN | 掘金 | InfoQ | 51CTO | 华为云 | 阿里云 | 腾讯云 等社区博客专家,C站博客之星Top30,华为云多年度十佳博主,掘金多年度人气作者Top40,掘金等各大社区平台签约作者,51CTO年度博主Top12,掘金/InfoQ/51CTO等社区优质创作者;全网粉丝合计 30w+;更多精彩福利点击这里;硬核微信公众号「猿圈奇妙屋」,欢迎你的加入!免费白嫖最新BAT互联网公司面试真题、4000G PDF电子书籍、简历模板等海量资料,你想要的我都有,关键是你不来拿。

-End-