RabbitMq学习笔记

本文详细介绍了RabbitMQ的原理、作用、核心概念,包括消息队列的流量消峰、应用解耦、异步处理,以及RabbitMQ的安装、Web管理、SpringBoot整合。深入讲解了消息队列模式、发布确认策略、消息应答机制、持久化和预取值等关键特性。最后探讨了交换机类型、死信和延迟队列的应用,为读者提供了全面的RabbitMQ学习指南。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

RabbitMQ

1 简介

1.1 介绍

RabbitMQ是一个由erlang语言编写的、开源的、在AMQP基础上完整的、可复用的企业消息系统。支持多种语言,包括java、Python、ruby、PHP、C/C++等。

本质是个队列,FIFO 先入先出,只不过队列中存放的内容是message 而已,还是一种跨进程的通信机制,用于上下游传递消息。

(1)MQ:MQ是 message queue 的简称,是应用程序和应用程序之间通信的方法。

(2)AMQP:advanced message queuing protocol ,一个提供统一消息服务的应用层标准高级消息队列协议,是应用层协议的一个开放标准,为面向消息的中间件设计。基于此协议的客户端与消息中间件可传递消息并不受客户端/中间件不同产品、不同开发语言等条件的限制。

1.2 消息队列作用

1.2.1 流量消峰

举个例子,如果订单系统最多能处理一万次订单,这个处理能力应付正常时段的下单时绰绰有余,正常时段我们下单一秒后就能返回结果。但是在高峰期,如果有两万次下单操作系统是处理不了的,只能限制订单超过一万后不允许用户下单。使用消息队列做缓冲,我们可以取消这个限制,把一秒内下的订单分散成一段时间来处理,这时有些用户可能在下单十几秒后才能收到下单成功的操作,但是比不能下单的体验要好。

1.2.2 应用解耦

以电商应用为例,应用中有订单系统、库存系统、物流系统、支付系统。用户创建订单后,如果耦合调用库存系统、物流系统、支付系统,任何一个子系统出了故障,都会造成下单操作异常。当转变成基于消息队列的方式后,系统间调用的问题会减少很多,比如物流系统因为发生故障,需要几分钟来修复。在这几分钟的时间里,物流系统要处理的内存被缓存在消息队列中,用户的下单操作可以正常完成。当物流系统恢复后,继续处理订单信息即可,中单用户感受不到物流系统的故障,提升系统的可用性。

1.2.3 异步处理

有些服务间调用是异步的,例如 A 调用 B,B 需要花费很长时间执行,但是 A 需要知道 B 什么时候可以执行完,以前一般有两种方式,A 过一段时间去调用 B 的查询 api 查询。或者 A 提供一个 callback api,B 执行完之后调用 api 通知 A 服务。这两种方式都不是很优雅,使用消息总线,可以很方便解决这个问题,A 调用 B 服务后,只需要监听 B 处理完成的消息,当 B 处理完成后,会发送一条消息给 MQ,MQ 会将此消息转发给 A 服务。这样 A 服务既不用循环调用 B 的查询 api,也不用提供 callback api。同样B 服务也不用做这些操作。A 服务还能及时的得到异步处理成功的消息。

1.3 核心概念

  • 生产者(Producer):发送消息的应用。
  • 消费者(Consumer):接收消息的应用。
  • 队列(Queue):存储消息的缓存。
  • 消息(Message):由生产者通过RabbitMQ发送给消费者的信息。
  • 连接(Connection):连接RabbitMQ和应用服务器的TCP连接。
  • 通道(Channel):连接里的一个虚拟通道。当你通过消息队列发送或者接收消息时,这个操作都是通过通道进行的。
  • 交换机(Exchange):交换机负责从生产者那里接收消息,并根据交换类型分发到对应的消息列队里。要实现消息的接收,一个队列必须到绑定一个交换机。
  • 绑定(Binding):绑定是队列和交换机的一个关联连接。一个交换机可以绑定多个队列
  • 路由键(Routing Key):路由键是供交换机查看并根据键来决定如何分发消息到列队的一个键。路由键可以说是消息的目的地址

1.4 模式

在这里插入图片描述在这里插入图片描述

  1. Broker:接收和分发消息的应用,RabbitMQ Server 就是 Message Broker
  2. Virtual host:出于多租户和安全因素设计的,把 AMQP 的基本组件划分到一个虚拟的分组中,类似于网络中的 namespace 概念。当多个不同的用户使用同一个 RabbitMQ server 提供的服务时,可以划分出多个 vhost,每个用户在自己的 vhost 创建 exchange/queue 等
  3. Connection:publisher/consumer 和 broker 之间的 TCP 连接
  4. Channel:如果每一次访问 RabbitMQ 都建立一个 Connection,在消息量大的时候建立 TCP Connection 的开销将是巨大的,效率也较低。Channel 是在 connection 内部建立的逻辑连接,如果应用程序支持多线程,通常每个 thread 创建单独的 channel 进行通讯,AMQP method 包含了 channel id 帮助客
    户端和 message broker 识别 channel,所以 channel 之间是完全隔离的。 Channel 作为轻量级的Connection 极大减少了操作系统建立 TCP connection 的开销
  5. Exchange : message 到达 broker 的第一站,根据分发规则,匹配查询表中的 routing key,分发消息到 queue 中去。常用的类型有:direct (point-to-point), topic (publish-subscribe) and fanout(multicast)
  6. Queue : 消息最终被送到这里等待 consumer 取走
  7. Binding : exchange 和 queue 之间的虚拟连接,binding 中可以包含 routing key,Binding 信息被保存到 exchange 中的查询表中,用于 message 的分发依据

生产者(Producer)发送->中间件->消费者(Consumer)接收消息。

RabbitMQ包括六种队列模式,简单队列、工作队列、发布/订阅、路由、主题、rpc等。

1、简单队列**

1)生产者将消息发送到队列,消费者从队列获取消息。

(2)一个队列对应一个消费者。

在这里插入图片描述

2、工作队列

(1)一个生产者,多个消费者。

(2)一个消息发送到队列时,只能被一个消费者获取。

(3)多个消费者并行处理消息,提升消息处理速度。

    注意:channel.basicQos(1)表示同一时刻只发送一条消息给消费者。

在这里插入图片描述

3、发布/订阅模式(Publish/Subcribe)

将消息发送到交换机,队列从交换机获取消息,队列需要绑定到交换机。

(1)一个生产者,多个消费者。

(2)每一个消费者都有自己的一个队列。

(3)生产者没有将消息直接发送到队列,而是发送到交换机。

(4)每一个队列都要绑定到交换机。

(5)生产者发送的消息,经过交换机到达队列,实现一个消息被多个消费者获取的目的。

(6)交换机类型为“fanout”。

    注意:交换机本身没有存储消息的能力,消息只能存储到队列中。

在这里插入图片描述

4、路由模式(Routing)

路由模式是发布/订阅模式的一种特殊情况。

(1)路由模式的交换机类型为“direct”。

(2)绑定队列到交换机时指定 key,即路由键,一个队列可以指定多个路由键。

(3)生产者发送消息时指定路由键,这时,消息只会发送到绑定的key的对应队列中。

在这里插入图片描述

5、主题模式(Topic)

将路由键和某模式进行匹配。此时,队列需要绑定到一个模式上。

符号“#”匹配一个或多个词,“*”匹配不多不少一个词。

绑定队列到交换机指定key时,进行通配符模式匹配。

在这里插入图片描述

2 安装

2.1 安装erlang

由于rabbitmq是基于erlang语言开发的,所以必须先安装erlang。

  • erlang-23.3.4.8-1.el7.x86_64.rpm
  • rabbitmq-server-3.8.26-1.el7.noarch.rpm
# 1 检查版本
[root@centos2 software]# uname -a
Linux centos2 3.10.0-1160.el7.x86_64 #1 SMP Mon Oct 19 16:18:59 UTC 2020 x86_64 x86_64 x86_64 GNU/Linux
[root@centos2 software]# 
# 系统版本是 el7 ,所以我们软件也是 el7
# 2 安装
rpm -ivh erlang-23.3.4.8-1.el7.x86_64.rpm
yum install socat -y   					
rpm -ivh rabbitmq-server-3.8.26-1.el7.noarch.rpm

2.2 启动/关闭

2.2.1 添加开机启动 RabbitMQ 服务

chkconfig rabbitmq-server on

2.2.2 启动服务

/sbin/service rabbitmq-server start 

2.2.3 查看服务状态

/sbin/service rabbitmq-server status

2.2.4 停止服务(选择执行)

/sbin/service rabbitmq-server stop

2.3 web管理

2.3.1 开启 web 管理插件

# 安装插件前 先关闭服务
/sbin/service rabbitmq-server stop
rabbitmq-plugins enable rabbitmq_management
# 开启防火墙端口
firewall-cmd --zone=public --add-port=15672/tcp --permanent
systemctl restart firewalld
firewall-cmd --list-all

用默认账号密码(guest)访问地址 192.168.0.202:15672 出现权限问题

在这里插入图片描述

出现权限问题,需要添加管理员账号。

2.3.2 添加账号

创建账号 密码自定义123

rabbitmqctl add_user admin 123

设置用户角色

rabbitmqctl set_user_tags admin administrator

设置用户权限

# set_permissions [-p <vhostpath>] <user> <conf> <write> <read>
rabbitmqctl set_permissions -p "/" admin ".*" ".*" ".*"

用户 user_admin 具有/vhost1 这个 virtual host 中所有资源的配置、写、读权限 。 不同的vhost有不同的交换机和队列。

当前用户和角色

rabbitmqctl list_users

再次登录 192.168.0.202:15672

3 springboot 整合

3.1 简单队列模式

在这里插入图片描述

3.1.1 创建一个maven工程

3.1.2 添加依赖

<!-- https://mvnrepository.com/artifact/com.rabbitmq/amqp-client -->
<dependency>
    <groupId>com.rabbitmq</groupId>
    <artifactId>amqp-client</artifactId>
    <version>5.9.0</version>
</dependency>
<!-- https://mvnrepository.com/artifact/commons-io/commons-io -->
<dependency>
    <groupId>commons-io</groupId>
    <artifactId>commons-io</artifactId>
    <version>2.11.0</version>
</dependency>

3.1.3 编写生产者

package com.mozhu.rabbitmq.test;

import com.rabbitmq.client.Channel;
import com.rabbitmq.client.Connection;
import com.rabbitmq.client.ConnectionFactory;
import java.io.IOException;
import java.util.concurrent.TimeoutException;

public class Product {

    private static final String QUERY_NAME = "hello" ;
    private static final String QUERY_HOST = "192.168.0.202" ;
    private static final String QUERY_USERNAME = "admin" ;
    private static final String QUERY_PASSWORD = "123" ;

    public static void main(String[] args) {

        // 1 创建链接工厂 连接rabbitMq
        ConnectionFactory factory = new ConnectionFactory();
        factory.setHost(QUERY_HOST);
        factory.setUsername(QUERY_USERNAME);
        factory.setPassword(QUERY_PASSWORD);
        // 2 连接 rabbitmq
        try {
            Connection connection = factory.newConnection();
            // 3 创建信道
            Channel channel = connection.createChannel();
            /**
            * * @param queue the name of the queue
             * @param durable  是否持久化  true if we are declaring a durable queue (the queue will survive a server restart)
             * @param exclusive 是否只供一个小消费者 true if we are declaring an exclusive queue (restricted to this connection)
             * @param autoDelete 是否自动删除(长时间不用) true if we are declaring an autodelete queue (server will delete it when no longer in use)
             * @param arguments other properties (construction arguments) for the queue
             * */
            // 4 创建队列
            channel.queueDeclare(QUERY_NAME , false , false , false ,null);
            String msg = "墨墨你在干啥 ? " ;
            /**
             *  * @param exchange   发送到哪个交换机    the exchange to publish the message to
             *  * @param routingKey 路由key           the routing key
             *  * @param props      消息其他属性       other properties for the message - routing headers etc
             *  * @param body       消息体             the message body
             * */
            // 4 发送消息
            channel.basicPublish("",QUERY_NAME,null , msg.getBytes());
            System.out.println("================================== 消息发送完成! =====================================");

        } catch (IOException e) {
            e.printStackTrace();
        } catch (TimeoutException e) {
            e.printStackTrace();
        }
    }
}

运行程序,发现链接超时, 查看源码,默认端口 5672 ,在服务器中开放此端口,运行发送成功。

查看web后台:
在这里插入图片描述

3.1.4 编写消费者

package com.mozhu.rabbitmq.test;

import com.rabbitmq.client.*;
import java.io.IOException;
import java.util.concurrent.TimeoutException;

public class Consumer {
    private static final String QUERY_NAME = "hello" ;
    private static final String QUERY_HOST = "192.168.0.202" ;
    private static final String QUERY_USERNAME = "admin" ;
    private static final String QUERY_PASSWORD = "123" ;

    public static void main(String[] args) {
        // 1 创建链接工厂 连接rabbitMq
        ConnectionFactory factory = new ConnectionFactory();
        factory.setHost(QUERY_HOST);
        factory.setUsername(QUERY_USERNAME);
        factory.setPassword(QUERY_PASSWORD);
        // 2 连接 rabbitmq
        try {
            Connection connection = factory.newConnection();
            // 3 创建信道
            Channel channel = connection.createChannel();
            // 消费完成的回调
            DeliverCallback deliverCallback = (String consumerTag, Delivery message) ->{
                System.out.println("==========  消息接收: ===========");
                System.out.println( new String(message.getBody()) );
            };
            // 取消消费回调
            CancelCallback cancelCallback = (String consumerTag) -> {
                System.out.println("消费 中断!!!");
            };
            /**
            * * @param queue the name of the queue
             * * @param autoAck 是否自动应答 true if the server should consider messages acknowledged once delivered; false if the server should expect explicit acknowledgements
             * * @param deliverCallback  消费接收完回调 callback when a message is delivered
             * * @param cancelCallback   取消消费回调 callback when the consumer is cancelled
            * */
            channel.basicConsume(QUERY_NAME, true, deliverCallback, cancelCallback);
        } catch (IOException e) {
            e.printStackTrace();
        } catch (TimeoutException e) {
            e.printStackTrace();
        }
    }
}

测试

1 先关闭两个程序

2 启动生产者,发送消息到消息队列

3 启动消费者,打印接收的消息

3.2 工作队列模式

工作队列(又称任务队列)的主要思想是避免立即执行资源密集型任务,而不得不等待它完成。

相反我们安排任务在之后执行。我们把任务封装为消息并将其发送到队列。在后台运行的工作进程将弹出任务并最终执行作业。

当有多个工作线程时,这些工作线程将轮训处理这些任务。

(1)一个生产者,多个消费者。

(2)一个消息发送到队列时,只能被一个消费者获取。

(3)多个消费者并行处理消息,提升消息处理速度。

    注意:channel.basicQos(1)表示同一时刻只发送一条消息给消费者。

在这里插入图片描述

3.2.1 工具类

创建链接,产生信道。

package com.mozhu.utils;

import com.rabbitmq.client.Channel;
import com.rabbitmq.client.Connection;
import com.rabbitmq.client.ConnectionFactory;

/**
 * @Description:    rabbitmq 工具类
 * @Author:         hgl
 * @CreateDate:     2021-07-25 23:14
 * @UpdateUser:
 * @UpdateDate:     2021-07-25 23:14
 * @UpdateRemark:   修改内容
 * @Version:        1.0
 */
public class RabbitMQUtils {
    public static final String QUERY_NAME = "hello" ;
    static final String QUERY_HOST = "192.168.0.202" ;
    static final String QUERY_USERNAME = "admin" ;
    static final String QUERY_PASSWORD = "123" ;
    /**
     * @Desirciption:  创建信道
     * @Author hgl
     * @Date : 2021-07-25 23:15
     * @Param
     * @Return
     */
    public static Channel createChannel() {
        // 1 创建链接工厂 连接rabbitMq
        ConnectionFactory factory = new ConnectionFactory();
        factory.setHost(QUERY_HOST);
        factory.setUsername(QUERY_USERNAME);
        factory.setPassword(QUERY_PASSWORD);
        Connection connection  ;
        Channel channel = null ;
        // 2 连接 rabbitmq
        try {
            connection = factory.newConnection();
            // 3 创建信道
            channel = connection.createChannel();
        } catch ( Exception e) {
            e.printStackTrace();
        }
        return channel ;
    }
}

3.2.2 消费者

接收消息

package com.mozhu.work;

import com.mozhu.utils.RabbitMQUtils;
import com.rabbitmq.client.CancelCallback;
import com.rabbitmq.client.Channel;
import com.rabbitmq.client.DeliverCallback;
import com.rabbitmq.client.Delivery;

/**
 * @Description:    消费者线程
 * @Author:         hgl
 * @CreateDate:     2021-07-25 23:26
 * @UpdateUser:
 * @UpdateDate:     2021-07-25 23:26
 * @UpdateRemark:   修改内容
 * @Version:        1.0
 */
public class ConsumerWork {
    public static void main(String[] args) throws  Exception{
        Channel channel = RabbitMQUtils.createChannel();
        DeliverCallback deliverCallback = (String consumerTag, Delivery message) ->{
            System.out.println("==========  消息接收:===========" + new String(message.getBody()) );
        };
        CancelCallback cancelCallback = (String consumerTag) -> {
            System.out.println("消息被取消!!!");
        };
        // 在运行第二个线程事,改为 two 作为区分
        System.out.println("consumer-one....."); 
        channel.basicConsume(RabbitMQUtils.QUERY_NAME, true, deliverCallback, cancelCallback);
    }
}

同时启动两个消费者:

1 先启动一个

2 在启动处,edit configration ,右上角 allow parallerl run 前面打钩,允许同一份代码运行多次

在这里插入图片描述

启动两个,会有两个名字一样的控制台。

3.2.3 生产者

package com.mozhu.work;


import com.mozhu.utils.RabbitMQUtils;
import com.rabbitmq.client.Channel;
/**
 * @Description:    工作模式 的 生产者
 * @Author:         hgl
 * @CreateDate:     2021-07-25 23:40
 * @UpdateUser:
 * @UpdateDate:     2021-07-25 23:40
 * @UpdateRemark:   修改内容
 * @Version:        1.0
 */
public class Product {
    public static void main(String[] args) throws  Exception{
        Channel channel = RabbitMQUtils.createChannel();
        // 4 创建队列
        channel.queueDeclare(RabbitMQUtils.QUERY_NAME , false , false , false ,null);
        // 发送消息
        String msg ;
        for (int i = 0; i < 10; i++) {
            msg = "墨墨---" + i ;
            channel.basicPublish("",RabbitMQUtils.QUERY_NAME,null , msg.getBytes());
            System.out.println( "======发送消息完成:" + msg );
        }
    }
}

3.2.4 测试结果

1 先运行两个消费者

2 再运行生产者

运行后,控制台输出如下: 是轮训模式。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.3 发布确认的策略

3.3.1 开启发布确认的方法

发布确认默认是没有开启的,如果要开启需要调用方法 confirmSelect,每当你要想使用发布确认,都需要在 channel 上调用该方法
在这里插入图片描述

3.3.2 单个确认发布

这是一种简单的确认方式,它是一种 同步确认发布的方式,也就是发布一个消息之后只有它被确认发布,后续的消息才能继续发布,waitForConfirmsOrDie(long)这个方法只有在消息被确认的时候才返回,如果在指定时间范围内这个消息没有被确认那么它将抛出异常。这种确认方式有一个最大的缺点就是: 发布速度特别的慢,因为如果没有确认发布的消息就会阻塞所有后续消息的发布,这种方式最多提供每秒不超过数百条发布消息的吞吐量。当然对于某些应用程序来说这可能已经足够了。

3.3.3 批量确认发布

上面那种方式非常慢,与单个等待确认消息相比,先发布一批消息然后一起确认可以极大地提高吞吐量,当然这种方式的缺点就是:当发生故障导致发布出现问题时,不知道是哪个消息出现问题了,我们必须将整个批处理保存在内存中,以记录重要的信息而后重新发布消息。当然这种方案仍然是同步的,也一样阻塞消息的发布。

3.3.4 异步确认发布

异步确认虽然编程逻辑比上两个要复杂,但是性价比最高,无论是可靠性还是效率都没得说,他是利用回调函数来达到消息可靠性传递的,这个中间件也是通过函数回调来保证是否投递成功,下面就让我们来详细讲解异步确认是怎么实现的。

在这里插入图片描述

3.3.5 如何处理异步未确认消息

最好的解决的解决方案就是把未确认的消息放到一个基于内存的能被发布线程访问的队列,比如说用 ConcurrentLinkedQueue 这个队列在 confirm callbacks 与发布线程之间进行消息的传递。

3.3.6 以上 3 3 种发布确认速度对比

单独发布消息
同步等待确认,简单,但吞吐量非常有限。
批量发布消息
批量同步等待确认,简单,合理的吞吐量,一旦出现问题但很难推断出是那条消息出现了问题。
异步处理:
最佳性能和资源使用,在出现错误的情况下可以很好地控制,但是实现起来稍微难些

4 消息应答

4.1 概念

消费者完成一个任务可能需要一段时间,如果其中一个消费者处理一个长的任务并仅只完成了部分突然它挂掉了,会发生什么情况。RabbitMQ 一旦向消费者传递了一条消息,便立即将该消息标记为删除。在这种情况下,突然有个消费者挂掉了,我们将丢失正在处理的消息。以及后续发送给该消费这的消息,因为它无法接收到。

为了保证消息在发送过程中不丢失,rabbitmq 引入消息应答机制,消息应答就是: 消费 者在接收到消息并且处理该消息之后,告诉 rabbitmq 它已经处理了rabbitmq 可以将它删除了。

消息应答分为:

  • 自动应答
  • 手动应答

4.2 自动应答

消息发送后立即被认为已经传送成功,这种模式需要在 高吞吐量和数据传输安全性方面做权衡,因为这种模式如果消息在接收到之前,消费者那边出现连接或者 channel 关闭,那么消息就丢失了,当然另一方面这种模式消费者那边可以传递过载的消息, 没有对传递的消息数量进行限制,当然这样有可能使得消费者这边由于接收太多还来不及处理的消息,导致这些消息的积压,最终使得内存耗尽,最终这些消费者线程被操作系统杀死, 所以这种模式仅适用在消费者可以高效并以某种速率能够处理这些消息的情况下使用。

4.3 手动应答

应答方法

  1. Channel.basicAck(用于肯定确认) RabbitMQ 已知道该消息并且成功的处理消息,可以将其丢弃了
  2. Channel.basicNack(用于否定确认)
  3. Channel.basicReject(用于否定确认) 与 Channel.basicNack 相比少一个参数不处理该消息了直接拒绝,可以将其丢弃了

Multiple

手动应答的好处是可以批量应答并且减少网络拥堵

  /**
     * Acknowledge one or several received
     * messages. Supply the deliveryTag from the {@link com.rabbitmq.client.AMQP.Basic.GetOk}
     * or {@link com.rabbitmq.client.AMQP.Basic.Deliver} method
     * containing the received message being acknowledged.
     * @see com.rabbitmq.client.AMQP.Basic.Ack
     * @param deliveryTag the tag from the received {@link com.rabbitmq.client.AMQP.Basic.GetOk} or {@link com.rabbitmq.client.AMQP.Basic.Deliver}
     * @param  批量 multiple true to acknowledge all messages up to and
     * including the supplied delivery tag; false to acknowledge just
     * the supplied delivery tag.
     * @throws java.io.IOException if an error is encountered
     */
    void basicAck(long deliveryTag, boolean multiple) throws IOException;

multiple 的 true 和 false 代表不同意思。true 代表批量应答 channel 上未应答的消息 比如说 channel 上有传送 tag 的消息 5,6,7,8 当前 tag 是 8 那么此时5-8 的这些还未应答的消息都会被确认收到消息应答。false 同上面相比,只会应答 tag=8 的消息 5,6,7 这三个消息依然不会被确认收到消息应答。建议false。

在这里插入图片描述

消息重新入队

如果消费者由于某些原因失去连接(其通道已关闭,连接已关闭或 TCP 连接丢失),导致消息未发送 ACK 确认,RabbitMQ 将了解到消息未完全处理,并将对其重新排队。如果此时其他消费者可以处理,它将很快将其重新分发给另一个消费者。这样,即使某个消费者偶尔死亡,也可以确保不会丢失任何消息。
在这里插入图片描述

4.4 手动代码

product

package com.mozhu.test03shoudongyingda;

import com.mozhu.utils.RabbitMQUtils;
import com.rabbitmq.client.Channel;
import java.util.Scanner;
public class Product {
    public static void main(String[] args) throws Exception{
        Channel channel = RabbitMQUtils.createChannel();
        // 创建队列
        channel.queueDeclare(RabbitMQUtils.QUERY_NAME , false , false , false ,null);
        String msg = "" ;
        // 发送消息
        System.out.println("请输入发送的消息:");
        Scanner scanner = new Scanner(System.in);
        while (scanner.hasNext()) {
            msg  = scanner.nextLine();
            channel.basicPublish("",RabbitMQUtils.QUERY_NAME,null , msg.getBytes("UTF-8") );
            System.out.println( "======发送消息完成:" + msg );
        }
    }
}

consumer01

package com.mozhu.test03shoudongyingda;

import com.mozhu.utils.RabbitMQUtils;
import com.rabbitmq.client.CancelCallback;
import com.rabbitmq.client.Channel;
import com.rabbitmq.client.DeliverCallback;
import com.rabbitmq.client.Delivery;

public class Consumer01 {
    public static void main(String[] args)  throws Exception{
        Channel channel = RabbitMQUtils.createChannel();
        System.out.println("Consumer01等待接收消息中........");
        // 接收到的消息
        DeliverCallback deliverCallback = (String consumerTag, Delivery message) ->{
            // 模拟 沉睡2秒
            try {
                Thread.sleep(2000);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            System.out.println("==========  消息接收:===========" + new String(message.getBody() , "UTF-8")  );
            // 手动应答
            /**
             * @param deliveryTag 消息标记,应答哪条消息 the tag from the received {@link com.rabbitmq.client.AMQP.Basic.GetOk} or {@link com.rabbitmq.client.AMQP.Basic.Deliver}
            * @param multiple  是否批量     true to acknowledge all messages up to and
             *      */
            // 真正把消息内容处理完后,手动应答
            channel.basicAck(message.getEnvelope().getDeliveryTag() , false );
        };
        CancelCallback cancelCallback = (String consumerTag) -> {
            System.out.println("消息被取消     !!!");
        };
        // 手动应答
        channel.basicConsume(RabbitMQUtils.QUERY_NAME , false , deliverCallback ,cancelCallback );
    }
}

consumer02

package com.mozhu.test03shoudongyingda;

import com.mozhu.utils.RabbitMQUtils;
import com.rabbitmq.client.CancelCallback;
import com.rabbitmq.client.Channel;
import com.rabbitmq.client.DeliverCallback;
import com.rabbitmq.client.Delivery;

public class Consumer02 {
    public static void main(String[] args)  throws Exception{
        Channel channel = RabbitMQUtils.createChannel();
        System.out.println("Consumer02等待接收消息中........");
        // 接收到的消息
        DeliverCallback deliverCallback = (String consumerTag, Delivery message) ->{
            // 模拟 沉睡20秒
            try {
                Thread.sleep(20000);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            System.out.println("==========  消息接收:===========" + new String(message.getBody() , "UTF-8")  );
            // 手动应答
            /**
             * @param deliveryTag 消息标记,应答哪条消息 the tag from the received {@link com.rabbitmq.client.AMQP.Basic.GetOk} or {@link com.rabbitmq.client.AMQP.Basic.Deliver}
            * @param multiple  是否批量     true to acknowledge all messages up to and
             *      */
            channel.basicAck(message.getEnvelope().getDeliveryTag() , false );

        };
        CancelCallback cancelCallback = (String consumerTag) -> {
            System.out.println("消息被取消     !!!");
        };
        // 手动应答
        channel.basicConsume(RabbitMQUtils.QUERY_NAME , false , deliverCallback ,cancelCallback );
    }
}

测试

一个生产者,两个消费者,在处理消息过程中,一个消费者宕机,这条消息不会丢失,是被重新加入队列然后让其他消费者处理。

  1. 启动生产者,启动两个消费者
  2. 生产者控制台依次输入 111 回车,222回车 , 333 回车 , 444 回车
  3. 在消费者01控制台 消息 111,333依次被处理完成
  4. 在消费者02 中处理了消息 222, 沉睡20秒钟,正在处理444,这时候关闭服务。模拟消息444 丢失
  5. 发现在消费者01 控制台中444 被执行了。

5 持久化

刚刚我们已经看到了如何处理任务不丢失的情况,但是如何保障当 RabbitMQ 服务停掉以后消息生产者发送过来的消息不丢失。默认情况下 RabbitMQ 退出或由

于某种原因崩溃时,它忽视队列和消息,除非告知它不要这样做。确保消息不会丢失需要做两件事: 我们需要将队列和消息都标记为持久 化

5.1 队列持久化

创建持久化队列

 // 创建队列,只需要将第二个参数改为true 
/**
* @param queue the name of the queue
 * @param durable true if we are declaring a durable queue (the queue will survive a server restart)
 * @param exclusive true if we are declaring an exclusive queue (restricted to this connection)
 * @param autoDelete true if we are declaring an autodelete queue (server will delete it when no longer in use)
 * @param arguments other properties (construction arguments) for the queue
* */
channel.queueDeclare(RabbitMQUtils.QUERY_NAME , true , false , false ,null);

但是需要注意的就是如果之前声明的队列不是持久化的,需要把原先队列先删除,或者重新创建一个持久化的队列,不然就会出现错误。
持久化队列后,web后台显示信息D 表示持久化:

在这里插入图片描述

5.2 消息持久化

要想让消息实现持久化需要在消息生产者修改代码,MessageProperties.PERSISTENT_TEXT_PLAIN 添 加这个属性。

// 发布消息时候持久化,MessageProperties.PERSISTENT_TEXT_PLAIN 
/**
* @param exchange the exchange to publish the message to
* @param routingKey the routing key
* @param props other properties for the message - routing headers etc
* @param body the message body
*/
channel.basicPublish("",RabbitMQUtils.QUERY_NAME,MessageProperties.PERSISTENT_TEXT_PLAIN , msg.getBytes("UTF-8") );

将消息标记为持久化并不能完全保证不会丢失消息。尽管它告诉 RabbitMQ 将消息保存到磁盘,但是这里依然存在当消息刚准备存储在磁盘的时候 但是还没有存储完,消息还在缓存的一个间隔点。此时并没有真正写入磁盘。持久性保证并不强,但是对于我们的简单任务队列而言,这已经绰绰有余了。如果需要更强有力的持久化策略,参考后边发布确认。

5.3 不公平分发

RabbitMQ 分发消息默认采用的轮训分发,但是在某种场景下这种策略并不是很好,比方说有两个消费者在处理任务,其中有个消费者 1 处理任务的速度非常快,而另外一个消费者 2处理速度却很慢,这个时候我们还是采用轮训分发的化就会到这处理速度快的这个消费者很大一部分时间处于空闲状态,而处理慢的那个消费者一直在干活,这种分配方式在这种情况下其实就不太好,但是RabbitMQ 并不知道这种情况它依然很公平的进行分发。

为了避免这种情况,在消费方可以设置参数 channel.basicQos(1);

// 在接受消息之前,消费方都设置
channel.basicQos(1);

意思是如果这个任务我还没有处理完或者我还没有应答你,你先别分配给我,我目前只能处理一个任务,然后 rabbitmq 就会把该任务分配给其他空闲消费者,当然如果所有的消费者都没有完成手上任务,队列还在不停的添加新任务,队列有可能就会遇到队列被撑满的情况,这个时候就只能添加新的 worker 或者改变其他存储任务的策略。

5.4 预取值

本身消息的发送就是异步发送的,所以在任何时候,channel 上肯定不止只有一个消息另外来自消费者的手动确认本质上也是异步的。

因此这里就存在一个未确认的消息缓冲区,因此希望开发人员能限制此缓冲区的大小,以避免缓冲区里面无限制的未确认消息问题。这个时候就可以通过使用 basic.qos 方法设置“预取计数”值来完成的。该值定义通道上允许的未确认消息的最大数量。

一旦数量达到配置的数量,RabbitMQ 将停止在通道上传递更多消息,除非至少有一个未处理的消息被确认,例如,假设在通道上有未确认的消息 5、6、7,8,并且通道的预取计数设置为 4,此时 RabbitMQ 将不会在该通道上再传递任何消息,除非至少有一个未应答的消息被 ack。比方说 tag=6 这个消息刚刚被确认 ACK,RabbitMQ 将会感知这个情况到并再发送一条消息。消息应答和 QoS 预取值对用户吞吐量有重大影响。通常,增加预取将提高向消费者传递消息的速度。

虽然自动应答传输消息速率是最佳的,但是,在这种情况下已传递但尚未处理的消息的数量也会增加,从而增加了消费者的 RAM 消耗(随机存取存储器)应该小心使用具有无限预处理的自动确认模式或手动确认模式,消费者消费了大量的消息如果没有确认的话,会导致消费者连接节点的内存消耗变大,所以找到合适的预取值是一个反复试验的过程,不同的负载该值取值也不同 100 到 300 范围内的值通常可提供最佳的吞吐量,并且不会给消费者带来太大的风险。预取值为 1 是最保守的。当然这将使吞吐量变得很低,特别是消费者连接延迟很严重的情况下,特别是在消费者连接等待时间较长的环境中。对于大多数应用来说,稍微高一点的值将是最佳的

// 在接受消息之前,消费方都设置, 可以一个设置2 ,另一个消费方设置5 
channel.basicQos(2);

6 发布确认

生产者将信道设置成 confirm 模式,一旦信道进入 confirm 模式, 所有在该信道上面发布的消息都将会被指派一个唯一的 ID(从 1 开始),一旦消息被投递到所有匹配的队列之后,broker就会发送一个确认给生产者(包含消息的唯一 ID),这就使得生产者知道消息已经正确到达目的队列了,如果消息和队列是可持久化的,那么确认消息会在将消息写入磁盘之后发出,broker 回传给生产者的确认消息中 delivery-tag 域包含了确认消息的序列号,此外 broker 也可以设置basic.ack 的 multiple 域,表示到这个序列号之前的所有消息都已经得到了处理。

confirm 模式最大的好处在于他是异步的,一旦发布一条消息,生产者应用程序就可以在等信道返回确认的同时继续发送下一条消息,当消息最终得到确认之后,生产者应用便可以通过回调方法来处理该确认消息,如果 RabbitMQ 因为自身内部错误导致消息丢失,就会发送一条 nack 消息,生产者应用程序同样可以在回调方法中处理该 nack 消息。

发布确认策略

  • 单个发布确认
  • 批量发布确认
  • 异步发布确认

发布确认默认是没有开启的,如果要开启需要调用方法 confirmSelect,每当你要想使用发布确认,都需要在 channel 上调用该方法

channel.confirmSelect();

6.1 单个确认发布

这是一种简单的确认方式,它是一种 同步确认发布的方式,也就是发布一个消息之后只有它被确认发布,后续的消息才能继续发布,waitForConfirmsOrDie(long)这个方法只有在消息被确认的时候才返回,如果在指定时间范围内这个消息没有被确认那么它将抛出异常。

这种确认方式有一个最大的缺点就是: 发布速度特别的慢,因为如果没有确认发布的消息就会阻塞所有后续消息的发布,这种方式最多提供每秒不超过数百条发布消息的吞吐量。当然对于某些应用程序来说这可能已经足够了。

package com.mozhu.test04fabuqueren;

import com.mozhu.utils.RabbitMQUtils;
import com.rabbitmq.client.Channel;
import java.io.IOException;
import java.util.UUID;

public class SingleConfirm {
    public static void main(String[] args) throws IOException, InterruptedException {
        Channel channel = RabbitMQUtils.createChannel();
        // 声明信道
        channel.queueDeclare( UUID.randomUUID().toString(), true, false, false, null);
        // 开启发布确认
        channel.confirmSelect();
        String msg = "";
        long start = System.currentTimeMillis();
        for (int i = 0; i < 1000; i++) {
            msg = "消息内容 -" + i ;
            channel.basicPublish("",RabbitMQUtils.QUERY_NAME,null , msg.getBytes("UTF-8") );
            boolean b = channel.waitForConfirms();
            if ( b ) {
                System.out.println(msg + "  已发送 =======================");
            }
        }
        long end = System.currentTimeMillis();
        System.out.println( " =============================================================" );
        System.out.println( " 总耗时: " + (end-start) + "  milliseconds" );
    }
}
// 耗时 1.5秒多。

6.2 批量发布确认

上面那种方式非常慢,与单个等待确认消息相比,先发布一批消息然后一起确认可以极大地提高吞吐量。当然这种方式的缺点就是:当发生故障导致发布出现问题时,不知道是哪个消息出现问题了,我们必须将整个批处理保存在内存中,以记录重要的信息而后重新发布消息。当然这种方案仍然是同步的,也一样阻塞消息的发布。

// 和上面代码一样,只是确认的时候,多条消息才确认一次
// 每50条消息 确认一次
if ( i%50 == 0 ) {
    boolean b = channel.waitForConfirms();
    if ( b ) {
        System.out.println(msg + "  已发送 =======================");
    }
}
// 耗时 180毫秒

6.3 异步确认发布

异步确认虽然编程逻辑比上两个要复杂,但是性价比最高,无论是可靠性还是效率都没得说,他是利用回调函数来达到消息可靠性传递的,这个中间件也是通过函

数回调来保证是否投递成功,下面就让我们来详细讲解异步确认是怎么实现的。

在这里插入图片描述

package com.mozhu.test04fabuqueren;


import com.mozhu.utils.RabbitMQUtils;
import com.rabbitmq.client.Channel;
import com.rabbitmq.client.ConfirmCallback;

import java.io.IOException;
import java.util.UUID;
import java.util.concurrent.ConcurrentLinkedQueue;
import java.util.concurrent.ConcurrentNavigableMap;
import java.util.concurrent.ConcurrentSkipListMap;

public class SingleConfirm {
    public static void main(String[] args) throws IOException, InterruptedException {
        Channel channel = RabbitMQUtils.createChannel();
        // 声明信道
        channel.queueDeclare( UUID.randomUUID().toString(), true, false, false, null);
        // 开启发布确认
        channel.confirmSelect();
        /**
         *  线程安全有序的哈希表 ,适合高并发
         */
        ConcurrentSkipListMap skipListMap = new ConcurrentSkipListMap<long,String>();
        // 监听成功回调
        // deliveryTag 消息标记
            // multiple 是否批量
        ConfirmCallback ackCallback = (long deliveryTag, boolean multiple) -> {
            if ( multiple ) {
                ConcurrentNavigableMap headMap = skipListMap.headMap(deliveryTag);
                headMap.clear();
            } else {
                skipListMap.remove(deliveryTag);
            }
            System.out.println( "确认收到消息 " + deliveryTag );
        };
        // 未确认消息回调
        ConfirmCallback nackCallback = (long deliveryTag, boolean multiple) -> {
            // 获取到未确认的消息
            String str  = skipListMap.get(deliveryTag).toString() ;
            System.out.println( "========================== " + deliveryTag + "=========消息未收到" );
        };
        // 添加异步确认监听
        /**
         @param ackCallback  成功回调 callback on ack
         @param nackCallback 失败回调 call on nack (negative ack)
         */
        channel.addConfirmListener(ackCallback , nackCallback);
        String msg = "";
        long start = System.currentTimeMillis();
        for (int i = 1; i <= 1000; i++) {
            msg = "消息内容 -" + i ;
            // 记录每次发的消息
            skipListMap.put(channel.getNextPublishSeqNo() , msg) ;
            channel.basicPublish("",RabbitMQUtils.QUERY_NAME,null , msg.getBytes("UTF-8") );
        }
        long end = System.currentTimeMillis();
        System.out.println( " =============================================================" );
        System.out.println( " 总耗时: " + (end-start) + "  milliseconds" );
    }
}
// 耗时 100毫秒

7 交换机

我们假设的是工作队列背后,每个任务都恰好交付给一个消费者(工作进程)。

现在将消息传达给多个消费者。这种模式称为 ”发布/订阅”。

7.1 概念

RabbitMQ 消息传递模型的核心思想是: 生产者生产的消息从不会直接发送到队列。实际上,通常生产者甚至都不知道这些消息传递传递到了哪些队列中。

相反,生产者只能将消息发送到交换机(exchange),交换机工作的内容非常简单,一方面它接收来自生产者的消息,另一方面将它们推入队列。交换机必须确切知道如何处理收到的消息。是应该把这些消息放到特定队列还是说把他们到许多队列中还是说应该丢弃它们。这就的由交换机的类型来决定。

7.2 Exchanges

总共有以下类型:

无名(默认),直接(direct), 主题(topic) ,标题(headers) , 扇出(fanout)

7.2.1 无名交换机

上面的代码没有指定交换机,用“”空串代替,就是默认交换机。消息能路由发送到队列中其实是由 routingKey(bindingkey)绑定 key 指定的,如果它存在的话

临时队列

每当我们连接到 Rabbit 时,我们都需要一个全新的空队列,为此我们可以创建一个具有随机名称的队列,或者能让服务器为我们选择一个随机队列名称那就更好

了。其次一旦我们断开了消费者的连接,队列将被自动删除。创建临时队列的方式如下:

String queueName = channel.queueDeclare().getQueue();

绑定

binding 是 exchange 和 queue 之间的桥梁,它告诉我们 exchange 和那个队列进行了绑定关系。比如说下面这张图告诉我们的就是 X 与 Q1 和 Q2 进行了绑定

在这里插入图片描述

7.2.2 fanout

Fanout 这种类型非常简单。正如从名称中猜到的那样,它是将接收到的所有消息广播到它知道的所有队列中。系统中默认有些 exchange 类型。

在这里插入图片描述

7.2.3 Direct exchange

队列只对它绑定的交换机的消息感兴趣。绑定用参数:routingKey 来表示也可称该参数为 binding key,创建绑定我们用代码:

channel.queueBind(queueName, EXCHANGE_NAME, "routingKey");

绑定之后的意义由其交换类型决定。

7.2.4 Topics

尽管使用 direct 交换机改进了我们的系统,但是它仍然存在局限性-比方说我们想接收的日志类型有info.base 和 info.advantage,某个队列只想 info.base 的消息,那这个时候 direct 就办不到了。这个时候就只能使用 topic 类型。

发送到类型是 topic 交换机的消息的 routing_key 不能随意写,必须满足一定的要求,它必须是一个单词列表,以点号分隔开。这些单词可以是任意单词,比如说:“stock.usd.nyse”, “nyse.vmw”,“quick.orange.rabbit”.这种类型的。当然这个单词列表最多不能超 255 个字节。

在这个规则列表中,其中有两个替换符是大家需要注意的

  • *(星号)可以代替一个单词
  • ‘# ’(井号)可以替代零个或多个单词
    在这里插入图片描述

Topic 匹配案例
下图绑定关系如下
Q1–>绑定的是
中间带 orange 带 3 个单词的字符串(.orange.)
Q2–>绑定的是
最后一个单词是 rabbit 的 3 个单词(…rabbit)
第一个单词是 lazy 的多个单词(lazy.#)

在这里插入图片描述

上图是一个队列绑定关系图,我们来看看他们之间数据接收情况是怎么样的

  • quick.orange.rabbit 被队列 Q1Q2 接收到
  • lazy.orange.elephant 被队列 Q1Q2 接收到
  • quick.orange.fox 被队列 Q1 接收到
  • lazy.brown.fox 被队列 Q2 接收到
  • lazy.pink.rabbit 虽然满足两个绑定但只被队列 Q2 接收一次
  • quick.brown.fox 不匹配任何绑定不会被任何队列接收到会被丢弃
  • quick.orange.male.rabbit 是四个单词不匹配任何绑定会被丢弃
  • lazy.orange.male.rabbit 是四个单词但匹配 Q2

当队列绑定关系是下列这种情况时需要引起注意当一个队列绑定键是#,那么这个队列将接收所有数据,就有点像 fanout 了如果队列绑定键当中没有#和*出现,那么该队列绑定类型就是 direct 了

8 其他

8.1 死信

先从概念解释上搞清楚这个定义,死信,顾名思义就是无法被消费的消息,字面意思可以这样理解,一般来说,producer 将消息投递到 broker 或者直接到 queue 里了,consumer 从 queue 取出消息进行消费,但某些时候由于特定的原因导致 queue 中的某些消息无法被消费,这样的消息如果没有后续的处理,就变成了死信,有死信自然就有了死信队列。

应用场景:为了保证订单业务的消息数据不丢失,需要使用到 RabbitMQ 的死信队列机制,当消息消费发生异常时,将消息投入死信队列中.还有比如说: 用户在商城下单成功并点击去支付后在指定时间未支付时自动失效

死信来源

  • 消息 TTL 过期
  • 队列达到最大长度(队列满了,无法再添加数据到 mq 中)
  • 消息被拒绝(basic.reject 或 basic.nack)并且 requeue=false.

8.2 延迟队列

延时队列,队列内部是有序的,最重要的特性就体现在它的延时属性上,延时队列中的元素是希望在指定时间到了以后或之前取出和处理,简单来说,延时队列就是用来存放需要在指定时间被处理的元素的队列。

使用场景

  1. 订单在十分钟之内未支付则自动取消
  2. 新创建的店铺,如果在十天内都没有上传过商品,则自动发送消息提醒。
  3. 用户注册成功后,如果三天内没有登陆则进行短信提醒。
  4. 用户发起退款,如果三天内没有得到处理则通知相关运营人员。
  5. 预定会议后,需要在预定的时间点前十分钟通知各个与会人员参加会议

这些场景都有一个特点,需要在某个事件发生之后或者之前的指定时间点完成某一项任务,如:发生订单生成事件,在十分钟之后检查该订单支付状态,然后将未

支付的订单进行关闭;看起来似乎使用定时任务,一直轮询数据,每秒查一次,取出需要被处理的数据,然后处理不就完事了吗?如果数据量比较少,确实可以这

样做,比如:对于“如果账单一周内未支付则进行自动结算”这样的需求,如果对于时间不是严格限制,而是宽松意义上的一周,那么每天晚上跑个定时任务检查一

下所有未支付的账单,确实也是一个可行的方案。但对于数据量比较大,并且时效性较强的场景,如:“订单十分钟内未支付则关闭“,短期内未支付的订单数据可

能会有很多,活动期间甚至会达到百万甚至千万级别,对这么庞大的数据量仍旧使用轮询的方式显然是不可取的,很可能在一秒内无法完成所有订单的检查,同时

会给数据库带来很大压力,无法满足业务要求而且性能低下。

8.3 RabbitMQ 中的 TTL

TTL 是什么呢?TTL 是 RabbitMQ 中一个消息或者队列的属性,表明一条消息或者该队列中的所有消息的最大存活时间,

单位是毫秒。换句话说,如果一条消息设置了 TTL 属性或者进入了设置 TTL 属性的队列,那么这条消息如果在 TTL 设置的时间内没有被消费,则会成为"死信"。如

果同时配置了队列的 TTL 和消息的TTL,那么较小的那个值将会被使用,有两种方式设置 TTL。

消息设置 TTL

在这里插入图片描述

队列设置

在这里插入图片描述

区别

两者的区别
如果设置了队列的 TTL 属性,那么一旦消息过期,就会被队列丢弃(如果配置了死信队列被丢到死信队列中),而第二种方式,消息即使过期,也不一定会被马上丢弃,因为消息是否过期是在即将投递到消费者之前判定的,如果当前队列有严重的消息积压情况,则已过期的消息也许还能存活较长时间;另外,还需要注意的一点是,如果不设置 TTL,表示消息永远不会过期,如果将 TTL 设置为 0,则表示除非此时可以直接投递该消息到消费者,否则该消息将会被丢弃。

前一小节我们介绍了死信队列,刚刚又介绍了 TTL,至此利用 RabbitMQ 实现延时队列的两大要素已经集齐,接下来只需要将它们进行融合,再加入一点点调味料,延时队列就可以新鲜出炉了。想想看,延时队列,不就是想要消息延迟多久被处理吗,TTL 则刚好能让消息在延迟多久之后成为死信,另一方面,成为死信的消息都会被投递到死信队列里,这样只需要消费者一直消费死信队列里的消息就完事了,因为里面的消息都是希望被立即处理的消息。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值