leetcode-5-最长回文子串

这篇博客探讨了三种解决寻找字符串中最长回文子串的方法:暴力解法、中心扩展法和动态规划。暴力解法虽然直观但效率低下,中心扩展法在效率上有所提升,而动态规划方法则进一步优化了时间复杂度。通过具体的示例代码,解释了每种方法的实现细节和思路。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

给定一个字符串 s,找到 s 中最长的回文子串。你可以假设 s 的最大长度为 1000。

示例 1:
输入: "babad"
输出: "bab"
注意: "aba" 也是一个有效答案。
示例 2:
输入: "cbbd"
输出: "bb"
解法一:

​ 暴力解法,通过双重循环,对每个子串进行判断,时间复杂度极高O(n^3)

bool isPalindromic(string& s,int i,int j)
{//判断是否为回文
    while(i<j)
    {
        if(s[i]!=s[j])
            return false;
        i++;
        j--;
    }
    return true;
}
string longestPalindrome(string s) {
    if(s.length()==1)
        return s;
    int max_index_i = 0;//左下标
    int max_index_j = 0;//右下标
    int maxLength = 1;//最长长度
    for(int i = 0;i<s.length()-1;i++)
    {
        for(int j = i+1;j<s.length();j++)
        {
            if(j-i+1>maxLength && isPalindromic(s,i,j))
            {//是回文
                maxLength = j-i+1;
                max_index_i = i;
                max_index_j = j;
            }
        }
    }
    // cout<<max_index_i<<endl;
    // cout<<max_index_j<<endl;
    // cout<<maxLength<<endl;
    return string(s,max_index_i,max_index_j-max_index_i+1);
}
解法二:

​ 中心扩展方法,分为奇数扩展和偶数扩展两种情况,在外层循环中找到中心点,从这个中心点向外一层一层扩散,若这个点与其相邻的点的字符相同,则需要进行偶数扩散。时间复杂度为O(n^2),相比解法一要快上许多。

string longestPalindrome(string s) {
    if(s.length()==1)
        return s;
    int begin_index = 0;
    int maxLength = 1;
    for(int i = 1;i<s.length()-1;i++)
    {
        for(int sidelength = 1;i-sidelength>=0&&i+sidelength<s.length();sidelength++)
        {//奇数扩散
            //cout<<"奇数:("<< i-sidelength<<"<- "<<i<<" ->"<<i+sidelength<<")"<<endl;
            if(s[i-sidelength]==s[i+sidelength])
            {
                if(2*sidelength+1>maxLength)
                {
                    maxLength = 2*sidelength+1;
                    //cout<<"maxLength: "<<maxLength<<endl;
                    begin_index = i - sidelength;
                }
            }
            else
                break;
        }
        if(s[i-1]==s[i])
        {//偶数扩散
            for(int sidelength = 0;i-1-sidelength>=0&&i+sidelength<s.length();sidelength++)
            {
                //cout<<"偶数:("<< i-1-sidelength<<"<- "<<i<<" ->"<<i+sidelength<<")"<<endl;
                if(s[i-1-sidelength]==s[i+sidelength])
                {
                    if(2*sidelength+2>maxLength)
                    {
                        maxLength = 2*sidelength+2;
                        //cout<<"maxLength: "<<maxLength<<endl;
                        begin_index = i-1-sidelength;
                    }
                }
                else
                    break;
            }
        }
    }
    //cout<<maxLength<<endl;
    //cout<<begin_index<<endl;
    if(maxLength<2&&s[s.length()-2]==s[s.length()-1])
        return string(s,s.length()-2,2);
    return string(s,begin_index,maxLength);
}
解法三:

​ 动态规划,使用二维数组dp[i][j]标识s[i-j]是否为回文子串。

​ 状态转移方程为: dp[i][j] = (s[i]==s[j])&&((j-1-(i+1)<1)||dp[i+1][j-1])

状态转移方程意为,s[i-j]是否是回文串取决于s[(i+1)-(j-1)]是否是回文串以及第i个和第j个字符是否相同。

string longestPalindrome(string s) {
    int n = s.length();
    if(n==1)
        return s;
    int begin_index = 0;
    int maxLength = 1;
    vector<vector<bool>> dp(n,vector<bool>(n));
    for(int j = 1;j<n;j++)
    {
        for(int i = 0;i<j;i++)
        {
            if(s[i]!=s[j])
                dp[i][j] = false;
            else
            {
                if(j-i<3||dp[i+1][j-1])
                {
                    dp[i][j] = true;
                    if(j-i+1>maxLength)
                    {
                        maxLength = j-i+1;
                        begin_index = i;
                    }
                }                      
                else
                    dp[i][j] = false;
            } 
        }
    }
    return string(s,begin_index,maxLength);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值