给定一个字符串 s,找到 s 中最长的回文子串。你可以假设 s 的最大长度为 1000。
示例 1:
输入: "babad"
输出: "bab"
注意: "aba" 也是一个有效答案。
示例 2:
输入: "cbbd"
输出: "bb"
解法一:
暴力解法,通过双重循环,对每个子串进行判断,时间复杂度极高O(n^3)
bool isPalindromic(string& s,int i,int j)
{//判断是否为回文
while(i<j)
{
if(s[i]!=s[j])
return false;
i++;
j--;
}
return true;
}
string longestPalindrome(string s) {
if(s.length()==1)
return s;
int max_index_i = 0;//左下标
int max_index_j = 0;//右下标
int maxLength = 1;//最长长度
for(int i = 0;i<s.length()-1;i++)
{
for(int j = i+1;j<s.length();j++)
{
if(j-i+1>maxLength && isPalindromic(s,i,j))
{//是回文
maxLength = j-i+1;
max_index_i = i;
max_index_j = j;
}
}
}
// cout<<max_index_i<<endl;
// cout<<max_index_j<<endl;
// cout<<maxLength<<endl;
return string(s,max_index_i,max_index_j-max_index_i+1);
}
解法二:
中心扩展方法,分为奇数扩展和偶数扩展两种情况,在外层循环中找到中心点,从这个中心点向外一层一层扩散,若这个点与其相邻的点的字符相同,则需要进行偶数扩散。时间复杂度为O(n^2),相比解法一要快上许多。
string longestPalindrome(string s) {
if(s.length()==1)
return s;
int begin_index = 0;
int maxLength = 1;
for(int i = 1;i<s.length()-1;i++)
{
for(int sidelength = 1;i-sidelength>=0&&i+sidelength<s.length();sidelength++)
{//奇数扩散
//cout<<"奇数:("<< i-sidelength<<"<- "<<i<<" ->"<<i+sidelength<<")"<<endl;
if(s[i-sidelength]==s[i+sidelength])
{
if(2*sidelength+1>maxLength)
{
maxLength = 2*sidelength+1;
//cout<<"maxLength: "<<maxLength<<endl;
begin_index = i - sidelength;
}
}
else
break;
}
if(s[i-1]==s[i])
{//偶数扩散
for(int sidelength = 0;i-1-sidelength>=0&&i+sidelength<s.length();sidelength++)
{
//cout<<"偶数:("<< i-1-sidelength<<"<- "<<i<<" ->"<<i+sidelength<<")"<<endl;
if(s[i-1-sidelength]==s[i+sidelength])
{
if(2*sidelength+2>maxLength)
{
maxLength = 2*sidelength+2;
//cout<<"maxLength: "<<maxLength<<endl;
begin_index = i-1-sidelength;
}
}
else
break;
}
}
}
//cout<<maxLength<<endl;
//cout<<begin_index<<endl;
if(maxLength<2&&s[s.length()-2]==s[s.length()-1])
return string(s,s.length()-2,2);
return string(s,begin_index,maxLength);
}
解法三:
动态规划,使用二维数组dp[i][j]标识s[i-j]是否为回文子串。
状态转移方程为: dp[i][j] = (s[i]==s[j])&&((j-1-(i+1)<1)||dp[i+1][j-1])
状态转移方程意为,s[i-j]是否是回文串取决于s[(i+1)-(j-1)]是否是回文串以及第i个和第j个字符是否相同。
string longestPalindrome(string s) {
int n = s.length();
if(n==1)
return s;
int begin_index = 0;
int maxLength = 1;
vector<vector<bool>> dp(n,vector<bool>(n));
for(int j = 1;j<n;j++)
{
for(int i = 0;i<j;i++)
{
if(s[i]!=s[j])
dp[i][j] = false;
else
{
if(j-i<3||dp[i+1][j-1])
{
dp[i][j] = true;
if(j-i+1>maxLength)
{
maxLength = j-i+1;
begin_index = i;
}
}
else
dp[i][j] = false;
}
}
}
return string(s,begin_index,maxLength);
}