leetcode-135-分发糖果

此博客介绍了LeetCode第135题的解决方案,内容涉及如何在满足每个孩子至少一个糖果且相邻孩子评分高的孩子获得更多糖果的条件下,计算最小糖果数。博主提出了一种策略,从评分最低的孩子开始发放糖果,并按照评分依次增加的顺序进行,同时提供了两种不同的实现方法,一种是排序后分配,另一种是从左右两侧扫描分配,后者在效率上更优。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

老师想给孩子们分发糖果,有 N 个孩子站成了一条直线,老师会根据每个孩子的表现,预先给他们评分。

你需要按照以下要求,帮助老师给这些孩子分发糖果:

  • 每个孩子至少分配到 1 个糖果。

  • 相邻的孩子中,评分高的孩子必须获得更多的糖果。

那么这样下来,老师至少需要准备多少颗糖果呢?

示例 1:

输入: [1,0,2]
输出: 5
解释: 你可以分别给这三个孩子分发 2、1、2 颗糖果。

示例 2:

输入: [1,2,2]
输出: 4
解释: 你可以分别给这三个孩子分发 1、2、1 颗糖果。
第三个孩子只得到 1 颗糖果,这已满足上述两个条件。

分析

题目要求糖果的最少消耗值,怎么才能在满足上面要求的情况下最少的发放糖果呢?

我们可以秉持一个策略:

  1. 从评分最低的孩子开始发
  2. 尽可能地发满足条件的最小数量

按照这个策略,我们从给评分最低的孩子一个糖果,然后按照评分依次增加的顺序发放糖果,如果这个孩子周围有人评分比他低,则让他比那个低分的孩子多一个糖果,如果没有人比他低,则发放一个糖果(老资本家了)。按照这个方式便能得到最小数量。

首先我们需要在不破坏原有队形的情况下得到评分排名,这里我们可以引入一个聚合类stu(其中存有评分和在原有队形中的序号),然后对这个聚合类按评分升序的条件排序(sort+lambda表达式)。排序成功后再按上述的方法不断分配糖果,从而得到正确答案。

//先按分数排序,再从分数最低的学生开始分糖果
struct stu{
	int score;//分数
	int index;//序号
};
/*
执行结果:通过
执行用时:88 ms, 在所有 C++ 提交中击败了5.22%的用户
内存消耗:19.4 MB, 在所有 C++ 提交中击败了5.02%的用户
*/
int candy(vector<int>& ratings) {
	if (ratings.size() == 1) {
		return 1;
	}
	vector<stu> vs;
	for (int i = 0; i < ratings.size(); ++i) {
		vs.push_back({ ratings[i], i });//放入保存有序号的vector中
	}
	//for (auto i : vs) {
	//	cout << i.score << "\t" << i.index << endl;
	//}
	auto sortFun = [](const stu& s1, stu& s2)  -> bool {
		if (s1.score < s2.score) {
			return true;
		}	return false;
	};
	sort(vs.begin(), vs.end(), sortFun);//按分数排序
	//cout << "------------" << endl;
	//for (auto i : vs) {
	//	cout << i.score << "\t" << i.index << endl;
	//}
	vector<int> candyPerChild(ratings.size(),0);
	for (int i = 0; i < ratings.size(); ++i) {
		int childIndex = vs[i].index;//评分第i低的孩子序号
		if (childIndex == 0) {//左侧没有小孩
			if (ratings[0] > ratings[1]) {//分数更高多分一个
				candyPerChild[0] = candyPerChild[1] + 1;
			}else {//分数相同或更低分一个
				candyPerChild[0] = 1;
			}
		}else if (childIndex == ratings.size() - 1) {//右侧没有小孩
			if (ratings[childIndex] > ratings[childIndex - 1]) {
				candyPerChild[childIndex] = candyPerChild[childIndex - 1] + 1;
			}else {
				candyPerChild[childIndex] = 1;
			}
		}else {//左右都有小孩
			if (ratings[childIndex] > ratings[childIndex - 1] && ratings[childIndex] > ratings[childIndex + 1]) {//如果左右两个小孩分数都高
				candyPerChild[childIndex] = max(candyPerChild[childIndex - 1], candyPerChild[childIndex + 1]) + 1;//等于相邻小孩糖果最大值加一
			}
			else if (ratings[childIndex]>ratings[childIndex-1]) {//仅比左边小孩分高
				candyPerChild[childIndex] = candyPerChild[childIndex - 1] + 1;
			}
			else if (ratings[childIndex]>ratings[childIndex+1]) {//仅比右边小孩分高
				candyPerChild[childIndex] = candyPerChild[childIndex + 1] + 1;
			}
			else {
				candyPerChild[childIndex] = 1;
			}
		}
	}
	int sum = 0;
	for (auto i : candyPerChild) {
		sum += i;
	}
	return sum;
}

虽然成功完成了任务,但是无论速度还是内存消耗都不太理想。

因为上面的方法在排序上浪费了时间,存储序号浪费了空间。

那么可不可以不排序,直接求呢?

当然可以,这就需要我们从约束条件下手了。由于每个孩子至少分配到一个糖果,我们可以将每个孩子的初始糖果值设置为1;相邻的孩子评分更高的必须获得更多,因此这个孩子

  1. 如果比左边的孩子评分高,就比左边的孩子糖果多一个。
  2. 如果比右边的孩子评分高,就比右边的孩子评分多一个。

因此这个孩子所得糖果值为与左边相比(1),以及与右边相比(2)这两种情况下所能得到糖果值的最大值。

又由于最左侧的孩子左侧没有人,不需要和左侧的比较。

因此我们可以从左至右扫描一次队形,根据每个孩子相比其左侧孩子的评分关系所能得到的糖果数。

同理再从右向左扫描一次,每个孩子所获糖果数即为这两次扫描预估值中更大的那个值(只有这样才能满足约束条件)

代码实现如下:

/*
执行用时:40 ms, 在所有 C++ 提交中击败了87.19%的用户
内存消耗:17 MB, 在所有 C++ 提交中击败了28.89%的用户
*/
int candy(vector<int>& ratings) {
	if (ratings.size() == 1) {
		return 1;
	}
	vector<int> candyPerChild(ratings.size(), 1);//首先给每个孩子预分配一个糖果
	for (int i = 0; i < ratings.size()-1; ++i) {
		if (ratings[i + 1] > ratings[i]) {
			candyPerChild[i + 1] = candyPerChild[i] + 1;
		}
	}
	for (int i = ratings.size() - 2; i >= 0; --i) {
		if (ratings[i] > ratings[i + 1]) {
			candyPerChild[i] = max(candyPerChild[i],candyPerChild[i + 1] + 1);
		}
	}
	int sum = 0;
	for (auto i : candyPerChild) {
		sum += i;
	}
	return sum;
}

可见此时相比上一个方法要快上不少。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值