1,本文介绍
ASF-YOLO框架结合空间和尺度特征,用于准确快速的细胞实例分割。用三重特征编码器模块TPE融合不同层级信息,采用尺度序列特征融合模块SSFF增强网络的多尺度信息提取能力。进一步引入通道和位置注意力机制(CPAM),将SSFF和TPE模块集成在一起,专注于信息通道和与空间位置相关的小对象,以提高检测和分割性能。
本文将讲解如何将ASF-YOLO融合进yolov8,以提高小目标检测的性能。
话不多说,上代码!
2,将ASF-YOLO融合进YOLOv8
2.1 步骤一
首先找到如下的目录'ultralytics/nn/modules',然后在这个目录下创建一个asfyolo.py文件,文件名字可以根据你自己的习惯起,然后将ASF-YOLO的核心代码复制进去。
# ASF-YOLO 的核心代码
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
def autopad(k, p=None, d=1): # kernel, padding, dilation
# Pad to 'same' shape outputs
if d > 1:
k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k] # actual kernel-size
if p is None:
p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
return p
class Conv(nn.Module):
# Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)
default_act = nn.SiLU() # default activation
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
super().__init__()
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
self.bn = nn.BatchNorm2d(c2)
self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
def forward(self, x):
return self.act(self.bn(self.conv(x)))
def forward_fuse(self, x):
return self.act(self.conv(x))
class Zoom_cat(nn.Module):
def __init__(self):
super().__init__()
# self.conv_l_post_down = Conv(in_dim, 2*in_dim, 3, 1, 1)
def forward(self, x):
"""l,m,s表示大中小三个尺度,最终会被整合到m这个尺度上"""
l, m, s = x[0], x[1],