爆改YOLOv8 | ASF-YOLO改进特征融合层(小目标检测)

1,本文介绍

ASF-YOLO框架结合空间和尺度特征,用于准确快速的细胞实例分割。用三重特征编码器模块TPE融合不同层级信息,采用尺度序列特征融合模块SSFF增强网络的多尺度信息提取能力。进一步引入通道和位置注意力机制(CPAM),将SSFF和TPE模块集成在一起,专注于信息通道和与空间位置相关的小对象,以提高检测和分割性能。

本文将讲解如何将ASF-YOLO融合进yolov8,以提高小目标检测的性能。

话不多说,上代码!

2,将ASF-YOLO融合进YOLOv8

2.1 步骤一

首先找到如下的目录'ultralytics/nn/modules',然后在这个目录下创建一个asfyolo.py文件,文件名字可以根据你自己的习惯起,然后将ASF-YOLO的核心代码复制进去。

# ASF-YOLO 的核心代码
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
 
 
def autopad(k, p=None, d=1):  # kernel, padding, dilation
    # Pad to 'same' shape outputs
    if d > 1:
        k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k]  # actual kernel-size
    if p is None:
        p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-pad
    return p
 
 
class Conv(nn.Module):
    # Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)
    default_act = nn.SiLU()  # default activation
 
    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
        super().__init__()
        self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
        self.bn = nn.BatchNorm2d(c2)
        self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
 
    def forward(self, x):
        return self.act(self.bn(self.conv(x)))
 
    def forward_fuse(self, x):
        return self.act(self.conv(x))
 
 
class Zoom_cat(nn.Module):
    def __init__(self):
        super().__init__()
        # self.conv_l_post_down = Conv(in_dim, 2*in_dim, 3, 1, 1)
 
    def forward(self, x):
        """l,m,s表示大中小三个尺度,最终会被整合到m这个尺度上"""
        l, m, s = x[0], x[1], 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值