pytorch加载模型torch.load() 遇到问题ModuleNotFoundError: No module named ‘models‘

问题描述:笔者在试图通过torch.load加载yolov5的权重文件时,是在一个空白文件夹开始新建工程,拷贝进来yolov5s.pt文件,写了如下代码:

import  torch

model_tmp = torch.load('./yolov5s.pt')
print(model_tmp)

得到报错:ModuleNotFoundError: No module named 'models'。

解决参考,博客的评论区pytorch加载模型torch.load() 遇到问题ModuleNotFoundError: No module named 'models'_找不到torchaudio.load-CSDN博客

问题分析:写load的这个文件要放到具有yolov5工程的文件夹里运行,因为它会寻找原生yolo5工程下的models文件夹,里面还会有yolo.py等文件存在,这就是这个找不到"models"的由来。此外,如果是自己手搓的简单网络pt权重文件话,就不会出现这种依赖工程的问题,打印是输出一堆张量。

问题解决

  1. 方案一,克隆yolov5的工程,在工程目录下去运行上面的代码,这样就可以正常输出,如下
    {'epoch': -1, 'best_fitness': array([     0.5274]), 'training_results': None, 'model': Model(
      (model): Sequential(
        (0): Focus(
          (conv): Conv(
            (conv): Conv2d(12, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
            (bn): BatchNorm2d(32, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
            (act): SiLU()
          )
        )
        (1): Conv(
          (conv): Conv2d(32, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
          (act): SiLU()
        )
        (2): C3(
          (cv1): Conv(
            (conv): Conv2d(64, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (bn): BatchNorm2d(32, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
            (act): SiLU()
          )
          (cv2): Conv(
            (conv): Conv2d(64, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (bn): BatchNorm2d(32, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
            (act): SiLU()
          )
          (cv3): Conv(
            (conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
            (act): SiLU()
          )
          (m): Sequential(
            (0): Bottleneck(
              (cv1): Conv(
                (conv): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
                (bn): BatchNorm2d(32, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
                (act): SiLU()
              )
              (cv2): Conv(
                (conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
                (bn): BatchNorm2d(32, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
                (act): SiLU()
              )
            )
          )
        )
        (3): Conv(
          (conv): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
          (act): SiLU()
        )
        (4): C3(
          (cv1): Conv(
            (conv): Conv2d(128, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
            (act): SiLU()
          )
          (cv2): Conv(
            (conv): Conv2d(128, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=Tru
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值