背包算法
背包问题详情可以看搜狗百科:
https://baike.sogou.com/v7898479.htm?fromTitle=%E8%83%8C%E5%8C%85%E9%97%AE%E9%A2%98
由默克尔(Merkle)和赫尔曼(Hellman)于1978年提出的,是第一个公开密钥算法。
数论核心:
让有私钥的人解决P问题;没有的去解决NP问题。
利用实际上存在两类不同的背包问题:
一类NP问题(普通背包问题)
另一类在线性时间内可解P问题(超递增背包问题)
超递增序列:
易解的背包问题可以转化成难解的背包问题。公钥使用难解的背包问题,它可很容易地被用来加密明文但不能用来解密密文。私钥使用易解的背包问题,它给出一个解密的简单方法。不知道私钥的人要破解密文就不得不解一个难解的背包问题。
公私钥对的生成
注意:选取的公钥 素数p 要比所有的超递增序列加起来的和都要大
加解密过程
举个例子
u,v,p满足以下条件
uvak=ubk(mod p) 推导 ak=vbk(mod p)
简单来说就是先针对位数列出一个超递增序列。然后这串为私钥bi,要保管好
超大质数p
小于p的一个质数u
产生另一个私钥v
p和u可以将bi加工成ai
ai用于将明文转化为暗文(为一个数字)
通过v将暗文转化为明文(为一个数字)
通过bi把明文翻译出一串数字,数字对应的就是解