数据安全与隐私保护——背包算法(NP问题)

背包算法

背包问题详情可以看搜狗百科:
https://baike.sogou.com/v7898479.htm?fromTitle=%E8%83%8C%E5%8C%85%E9%97%AE%E9%A2%98

由默克尔(Merkle)和赫尔曼(Hellman)于1978年提出的,是第一个公开密钥算法。

数论核心:

让有私钥的人解决P问题;没有的去解决NP问题。

利用实际上存在两类不同的背包问题:
一类NP问题(普通背包问题)
在这里插入图片描述
另一类在线性时间内可解P问题(超递增背包问题)
超递增序列:
在这里插入图片描述

易解的背包问题可以转化成难解的背包问题。公钥使用难解的背包问题,它可很容易地被用来加密明文但不能用来解密密文。私钥使用易解的背包问题,它给出一个解密的简单方法。不知道私钥的人要破解密文就不得不解一个难解的背包问题。

公私钥对的生成

注意:选取的公钥 素数p 要比所有的超递增序列加起来的和都要大
在这里插入图片描述

加解密过程

在这里插入图片描述

举个例子

u,v,p满足以下条件
在这里插入图片描述
uvak=ubk(mod p) 推导 ak=vbk(mod p)

简单来说就是先针对位数列出一个超递增序列。然后这串为私钥bi,要保管好
超大质数p
小于p的一个质数u
产生另一个私钥v
p和u可以将bi加工成ai
ai用于将明文转化为暗文(为一个数字)
通过v将暗文转化为明文(为一个数字)
通过bi把明文翻译出一串数字,数字对应的就是解
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

wujiekd

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值