T. Chur teaches various groups of students at university U. Every U-student has a unique Student Identification Number (SIN). A SIN s is an integer in the range 0 ≤ s ≤ MaxSIN with MaxSIN = 106-1. T. Chur finds this range of SINs too large for identification within her groups. For each group, she wants to find the smallest positive integer m, such that within the group all SINs reduced modulo m are unique.
Input
On the first line of the input is a single positive integer N, telling the number of test cases (groups) to follow. Each case starts with one line containing the integer G (1 ≤ G ≤ 300): the number of students in the group. The following G lines each contain one SIN. The SINs within a group are distinct, though not necessarily sorted.
Output
For each test case, output one line containing the smallest modulus m, such that all SINs reduced modulo m are distinct.
Sample Input
2
1
124866
3
124866
111111
987651
Sample Output
1
8
题解
题意:
- 找到最小的正整数m,这样在组内所有的SINS缩减模m都是唯一的。
思路:
- 暴力枚举,具体看代码和注释
Code
#include<iostream>
#include<memory.h>
#include<string.h>
#include<cstring>
using namespace std;
int SIN[1000000];
int G[100000];
int main()
{
int n, g, flag;
cin >> n;
while(n)
{
cin >> g;
for(int i = 0; i < g; i++)//存入每个学生的SIN值
cin >> SIN[i];
for(int m = g; m < 1000000; m++)//枚举模
{
memset(G, 0 , sizeof(int) * (m + 1));//重置G[],后面将SIN模m的值对应的位置数值+1
//最大改变m-1位置的值
flag = 0;
for(int i = 0;i < g; i++)
{
if(G[SIN[i] % m] > 0)//大于0说明,在i之前已有数模m得到相同的值
{
flag = 1;
break;
}
else
G[SIN[i] % m]++;
}
if(flag)
continue;
else
{
cout << m << endl;
break;
}
}
n--;
}
}